

So f tware

I D C D O C U M E N T A T I O N

Global
Association

(GA)
Subsystem

Approved for public release;
distribution unlimited

 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

Notice

This document was published May 2001 by the Monitoring Systems Operation of Science Applications Inter-
national Corporation (SAIC) as part of the International Data Centre (IDC) Documentation. Every effort was
made to ensure that the information in this document was accurate at the time of publication. However, infor-
mation is subject to change.

Contributors

Ronan Le Bras, Science Applications International Corporation

Trademarks

ORACLE is a registered trademark of Oracle Corporation.
SAIC is a trademark of Science Applications International Corporation.
Solaris is a registered trademark of Sun Microsystems.
SPARC is a registered trademark of Sun Microsystems.
UltraSPARC is a registered trademark of Sun Microsystems.
Sun is a registered trademark of Sun Microsystems.
UNIX is a registered trademark of UNIX System Labs, Inc.

Ordering Information

The ordering number for this document is SAIC-01/3009.

This document is cited within other IDC documents as [IDC7.1.4]

Notice Page

G loba l Assoc i a t ion (GA) Subsys tem

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

I D C D O C U M E N T A T I O N

CONTENTS
About this Document i

■ PURPOSE ii

■ SCOPE ii

■ AUDIENCE ii

■ RELATED INFORMATION iii

■ USING THIS DOCUMENT iii

Conventions iv

Chapter 1: Overview 1

■ INTRODUCTION 2

■ FUNCTIONALITY 6

■ IDENTIFICATION 6

■ STATUS OF DEVELOPMENT 6

■ BACKGROUND AND HISTORY 7

■ OPERATING ENVIRONMENT 7

Hardware 7

Commercial-Off-The-Shelf Software 7

Chapter 2: Architectural Design 9

■ CONCEPTUAL DESIGN 10

■ DESIGN DECISIONS 14

Programming Language 14

Global Libraries 14

Database 14

Interprocess Communication (IPC) 14

Filesystem 15

Design Model 15
G A) S u b s y s t e m

1

I D C D O C U M E N T A T I O N

Database Schema Overview 16

Database Entity-relationship Diagram 18

■ FUNCTIONAL DESCRIPTION 18

Building the Knowledge Base 21

Visualizing the Knowledge Base 21

Generating New Automatic Events 21

Resolving Conflicts 22

Setting Up Arrival Tags 22

■ INTERFACE DESIGN 22

Interface with Other IDC Systems 22

Interface with External Users 23

Interface with Operators 23

Chapter 3: Detai led Design of GAassoc 25

■ DATA FLOW MODEL 26

■ PROCESSING UNITS 28

Extract Arrival List 30

Read Command-line Parameters 31

Access Knowledge Base 32

Restrict Phase List 34

Associate Arrivals 35

Extract Large Events 44

Eliminate Redundant Events 47

Locate and Confirm Preliminary Event Hypotheses 49

Resolve Conflicts 51

Write Event Hypotheses to Database 52

■ DATABASE DESCRIPTION 53

Database Design 53

Database Schema 54

Chapter 4: Detai led Design of GAconfl ict 57

■ DATA FLOW MODEL 58

■ PROCESSING UNITS 61

Extract Arrival List 63
 M a y 2 0 0 1 I D C - 7 . 1 . 4

 G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

I D C D O C U M E N T A T I O N

Read Command-line Parameters 64

Read Event Information 64

Locate and Confirm Preliminary Event Hypotheses 65

Predict Defining Phases 66

Resolve Conflicts 68

Predict Nondefining Phases 68

Check Consistency 69

Write Event Hypotheses to Database 71

■ DATABASE DESCRIPTION 71

Database Design 71

Database Schema 72

Chapter 5: Detai led Design of GA_DBI 75

■ DATA FLOW MODEL 76

■ PROCESSING UNITS 77

Tag Auxiliary Arrivals 77

Tag Hydroacoustic Arrivals 78

■ DATABASE DESCRIPTION 79

Database Design 79

Database Schema 79

Chapter 6: Detai led Design of GAcons 81

■ DATA FLOW MODEL 82

■ PROCESSING UNITS 83

Build Static Grid 83

Build Grid Files 85

■ DATABASE DESCRIPTION 93

Database Design 93

Database Schema 93

Chapter 7: Detai led Design of GAgrid 95

■ DATA FLOW MODEL 96

■ PROCESSING UNITS 97

Read and Parse Grid File 97
G A) S u b s y s t e m

1

I D C D O C U M E N T A T I O N

Display Grid Information 98

■ DATABASE DESCRIPTION 99

References 101

Glossary G1

Index I1
 M a y 2 0 0 1 I D C - 7 . 1 . 4

 G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G loba l Assoc i a t ion (GA) Subsys tem

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

I D C D O C U M E N T A T I O N

FIGURES
FIGURE 1. IDC SOFTWARE CONFIGURATION HIERARCHY 3

FIGURE 2. RELATIONSHIP OF GA TO OTHER SOFTWARE UNITS OF
AUTOMATIC PROCESSING CSCI 5

FIGURE 3. HIGH-LEVEL PROCESSING FLOW SHOWING INTERACTIONS

AMONG DIFFERENT GA PROCESSES 12

FIGURE 4. GA DATABASE TABLE RELATIONSHIPS 19

FIGURE 5. GA FUNCTIONAL DESIGN 20

FIGURE 6. GAASSOC DATA FLOW 27

FIGURE 7. RELATIONSHIPS AMONG GAASSOC DATA STRUCTURES 38

FIGURE 8. EXTRACT LARGE EVENTS PROCESSING SEQUENCE 46

FIGURE 9. DOUBLE-LINK RELATIONSHIP BETWEEN DRIVER STRUCTURES

AND ARRIVAL_INF STRUCTURES 48

FIGURE 10. GACONFLICT DATA FLOW 59

FIGURE 11. INPUT AND OUTPUT BULLETIN TABLES IN GAASSOC AND GACONFLICT 72

FIGURE 12. GA_DBI DATA FLOW 76

FIGURE 13. GACONS DATA FLOW 82

FIGURE 14. PROPAGATION KNOWLEDGE BASE GRID FILE STRUCTURE 87

FIGURE 15. BEAM POINT RECORD STRUCTURE WITHIN GRID FILES 88

FIGURE 16. STATION RECORD STRUCTURE 88

FIGURE 17. RELATIONSHIPS AMONG GACONS DATA STRUCTURES 92

FIGURE 18. GAGRID DATA FLOW 97
G A) S u b s y s t e m

1

Globa l Assoc i a t ion (GA) Subsys tem

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

I D C D O C U M E N T A T I O N

TABLES
TABLE I: DATA FLOW SYMBOLS v

TABLE II: ENTITY-RELATIONSHIP SYMBOLS vi

TABLE III: TYPOGRAPHICAL CONVENTIONS vi

TABLE IV: DATA STRUCTURE AND POINTER CONVENTIONS vii

TABLE 1: STANDARD PRODUCTS AVAILABLE THROUGH GA 11

TABLE 2: DATABASE TABLES USED BY GA 16

TABLE 3: PROCESSING UNITS AND CORRESPONDING C FUNCTIONS 28

TABLE 4: PRIMARY DATA CONTENT IN STRUCTURES USED BY GA 37

TABLE 5: DRIVER STRUCTURE 39

TABLE 6: COR_STA STRUCTURE 41

TABLE 7: STA_AR STRUCTURE 42

TABLE 8: ARRIVAL_INF STRUCTURE 42

TABLE 9: DR_LIST STRUCTURE 49

TABLE 10: GAASSOC DATABASE USAGE 54

TABLE 11: PROCESSING UNITS AND CORRESPONDING C FUNCTIONS 60

TABLE 12: PRED_TRIPLET STRUCTURE 67

TABLE 13: GACONFLICT DATABASE USAGE 73

TABLE 14: GA_DBI DATABASE USAGE 80

TABLE 15: GRID_PT STRUCTURE 84

TABLE 16: BEAM_PT STRUCTURE 90

TABLE 17: FIRST_STA STRUCTURE 90

TABLE 18: STAPT STRUCTURE 90

TABLE 19: PHAS_INF STRUCTURE 91

TABLE 20: GACONS DATABASE USAGE 94
G A) S u b s y s t e m

1

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
About th i s Document

This chapter describes the organization and content of the document and includes

the following topics:

■ Purpose

■ Scope

■ Audience

■ Related Information

■ Using this Document
G A) S u b s y s t e m

1 i

S o f t w a r e
I D C D O C U M E N T A T I O N

ii
About th i s Document

PURPOSE

This document describes the design of the Global Association (GA) Subsystem

software of the International Data Centre (IDC). The software is part of the Net-

work Processing Computer Software Component (CSC) of the Automatic Process-

ing Computer Software Configuration Item (CSCI). This document provides a basis

for implementing, supporting, and testing the software.

SCOPE

The software is identified as follows:

Title: Global Association Subsystem

Abbreviation: GA

This document describes the architectural and detailed design of the software

including its functionality, components, data structures, high-level interfaces,

method of execution, and underlying hardware. This information is modeled on

the Data Item Description for Software Design Descriptions [DOD94a].

AUDIENCE

This document is intended for all engineering and management staff concerned

with the design of all IDC software in general and of GA in particular. The detailed

descriptions are intended for programmers who will be developing, testing, or

maintaining GA.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼About this Document
RELATED INFORMATION

The following documents complement this document:

■ Global Association (GA) Subsystem Software User Manual [IDC6.5.12]

■ IDC Processing of Seismic, Hydroacoustic and Infrasonic Data [IDC5.2.1]

■ Database Schema [IDC5.1.1Rev2]

■ Configuration of PIDC Databases [IDC5.1.3Rev0.1]

See “References” on page 101 for a list of documents that supplement this docu-

ment. The following UNIX manual (man) pages apply to the existing GA software:

■ GA

■ GAassoc

■ GAconflict

■ GA_DBI

■ GAcons

■ GAgrid

USING TH IS DOCUMENT

This document is part of the overall documentation architecture for the IDC. It is

part of the Software category, which describes the design of the software. This

document is organized as follows:

■ Chapter 1: Overview

This chapter provides a high-level view of GA, including its functionality,

components, background, status of development, and current operating

environment.

■ Chapter 2: Architectural Design

This chapter describes the architectural design of GA, including its con-

ceptual design, design decisions, functions, and interface design.
iii

G A) S u b s y s t e m

1

iv

▼ About this Document

S o f t w a r e
I D C D O C U M E N T A T I O N
■ Chapter 3: Detailed Design of GAassoc

This chapter describes the detailed design of GAassoc including its data

flow, software units, and database design.

■ Chapter 4: Detailed Design of GAconflict

This chapter describes the detailed design of GAconflict including its data

flow, software units, and database design.

■ Chapter 5: Detailed Design of GA_DBI

This chapter describes the detailed design of GA_DBI including its data

flow, software units, and database design.

■ Chapter 6: Detailed Design of GAcons

This chapter describes the detailed design of GAcons including its data

flow, software units, and database design.

■ Chapter 7: Detailed Design of GAgrid

This chapter describes the detailed design of GAgrid including its data

flow and software units.

■ References

This section lists the sources cited in this document.

■ Glossary

This section defines the terms, abbreviations, and acronyms used in this

document.

■ Index

This section lists topics and features provided in the document along with

page numbers for reference.

Convent ions

This document uses a variety of conventions, which are described in the following

tables. Table I shows the conventions for data flow diagrams. Table II shows the

conventions for entity-relationship diagrams. Table III lists typographical conven-

tions. Table IV shows conventions for the relationships between different data

structures within GA.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼About this Document
TABLE I: DATA FLOW SYMBOLS

Description Symbol1

1. Symbols in this table are based on Gane-Sarson conventions [Gan79].

process

external source or sink of data (left)

data store (left)

duplicated data store (right)

M = memory store

T = tape store

D = disk store

Db = database store

MS = mass store

control flow

data flow

decision

#

v

G A) S u b s y s t e m

1

vi

▼ About this Document

S o f t w a r e
I D C D O C U M E N T A T I O N
TABLE II: ENTITY-RELATIONSHIP SYMBOLS

Description Symbol

One A maps to one B.

One A maps to zero or one B.

One A maps to many Bs.

One A maps to zero or many Bs.

database table

TABLE III: TYPOGRAPHICAL CONVENTIONS

Element Font Example

database tables

database table and attribute,
when written in the dot notation

bold affiliation

assoc.belief

database attributes

processes, software units, and
libraries

titles of documents

 italics sta

GAassoc

Configuration of PIDC Databases

computer code and output

filenames, directories, and
websites

C structures

courier GAdepth_build:

slowamp.P

Phas_Inf

A B

A B

A B

A B

tablename

primary key
foreign key

attribute 1
attribute 2
.
.
.

attribute n
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼About this Document
TABLE IV: DATA STRUCTURE AND POINTER CONVENTIONS

Description Symbol

A set of rectangles represents a data structure. Each rectan-
gle represents an element of the structure. These elements
may be data or pointers. Data elements are indicated by an
empty rectangle. Pointers are indicated by a dot in the cen-
ter of the rectangle.

An arrow originating at a dot and pointing to the start of a
data structure represents a pointer to the address of
another data structure.

A circle with an “X” represents a null terminator, which ter-
minates a linked list of data structures.
vii

G A) S u b s y s t e m

1

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 1: Ove rv iew

This chapter provides a general overview of the GA software and includes the fol-

lowing topics:

■ Introduction

■ Functionality

■ Identification

■ Status of Development

■ Background and History

■ Operating Environment
G A) S u b s y s t e m

1 1

S o f t w a r e
I D C D O C U M E N T A T I O N

2

Chapter 1: Ove rv iew

INTRODUCT ION

The software of the IDC acquires time-series and radionuclide data from stations of

the International Monitoring System (IMS) and other locations. These data are

passed through a number of automatic and interactive analysis stages, which cul-

minate in the estimation of location and in the origin time of events (earthquakes,

volcanic eruptions, and so on) in the earth, including its oceans and atmosphere.

The results of the analysis are distributed to States Parties and other users by vari-

ous means. Approximately one million lines of developmental software are spread

across six CSCIs of the software architecture. One additional CSCI is devoted to

run-time data of the software. Figure 1 shows the logical organization of the IDC

software. The Automatic Processing CSCI distributes data through the following

CSCs:

■ Station Processing

This software scans data from individual time-series stations for charac-

teristic changes in the waveforms (detection of onsets) and characterizes

such onsets (feature extraction). The software then classifies the detec-

tions as arrivals in terms of phase type.

■ Network Processing

This software combines arrivals from several stations originating from

one event and infers the location and time of its origin.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
FIGURE 1. IDC SOFTWARE CONFIGURATION HIERARCHY

Automatic
Processing

Interactive
Processing

Distributed
Processing

Data
Services

System
Monitoring

Station
Processing

Network
Processing

Atmospheric
Transport

Time-series
Analysis

Bulletin Process
Monitoring
and Control

Application
Services

Continuous
Data
Subsystem

Message
Subsystem

Subscription
Subsystem

Data Services
Utilities and

Data
Archiving

Database
Tools

Configuration
Management

Performance
Monitoring

System
Monitoring

IDC Software

Retrieve
Subsystem

Web
Subsystem

Data for
Software

Interactive
Data

System
Monitoring
Data

Automatic
Processing

Distributed
Processing
Data

Data
Services

Data
Management

COTS
Data

Environmental
Data

Post-
location
Processing

Time-series
Libraries

Operational
Scripts

Interactive
Tools

Distributed
Processing
Scripts

Data
Management

Database
Libraries

Data

Data

Event
Screening

Time-series
Tools

Libraries

Radionuclide
Processing

Authentication
Services

Analysis
Libraries

Radionuclide
Analysis

Distributed
Processing
Libraries
3

G A) S u b s y s t e m

1

4

▼

Chapter 1:

Overview

S o f t w a r e
I D C D O C U M E N T A T I O N
■ Post-location Processing

This software computes various magnitude estimates and selects data to

be retrieved from auxiliary stations.

■ Event Screening

This software extracts a number of parameters that characterize an

event; then a default subset of the calculated Event Characterization

Parameters eliminates the events that are clearly not explosions.

■ Time-series Tools

This software includes various utilities for the Seismic, Hydroacoustic, and

Infrasonic (S/H/I) processing system.

■ Time-series Libraries

This software includes shared libraries to which several modules of the

S/H/I processing system are linked.

■ Operational Scripts

This software provides miscellaneous functionality to enable automatic

processing to function as a system.

■ Radionuclide Processing

This software includes the automated analysis, categorization, and flag-

ging processes for radionuclide data.

■ Atmospheric Transport

This software includes the forward and backward modeling of the trans-

port of particulates by atmospheric movements.

Figure 2 shows the relationship of GA to components of the Automatic Processing

CSCI. This figure indicates that GA fulfills the following roles: It associates the

arrivals produced by Station Processing to form event hypotheses. Detections from

the network of stations are grouped together into association sets, which define

distinct events. These events are located, and their magnitudes are estimated.

Figure 2 shows the dynamics of the processing, but does not show the static tables

(site, siteaux, affiliation, and so on) or waveform data files used by the processes.

Station Processing includes the programs DFX, which performs detection and fea-
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
ture extraction, StaPro, which performs initial phase identification, and HAE

(Hydroacoustic Azimuth Estimation), which determines the azimuth for multi-site

hydroacoustic stations.

FIGURE 2. RELATIONSHIP OF GA TO OTHER SOFTWARE UNITS OF
AUTOMATIC PROCESSING CSCI

1

4

DFX

2

StaPro

St
at

io
n

Pr
oc

es
si

ng

GA

N
et

w
or

k
Pr

oc
es

si
ng

WaveExpert

Po
st

-l
oc

at
io

n
Pr

oc
es

si
ng

arrival, apma amplitudehydro_assoc,
hydro_arr_group

event tables:
assoc, origin,
origerr, event

magnitude tables:
netmag, stamag

DbDbDb

Db
Db

5

3

HAE

arrival
data waveform

data

wfdiscDb

amplitude
data

hydroacoustic
azimuth data

magnitude
data

event
data

arrival
data

arrival
data

arrival
data

amplitude
data

event
data

magnitude
data

waveform
data
5

G A) S u b s y s t e m

1

6

▼

Chapter 1:

Overview

S o f t w a r e
I D C D O C U M E N T A T I O N
FUNCT IONALITY

GA is the process in the automatic pipeline that forms event hypotheses. GA reads

arrival and amplitude data for a time interval and forms sets of associations using

an exhaustive search algorithm. These association sets define the events, which

then are located and have their magnitude estimated. The locations are estimated

using a standard locator library and the magnitudes are evaluated using a standard

magnitude library.

IDENT IF ICAT ION

GA’s components (five programs and one library) are identified as follows:

■ GAassoc

■ GAconflict

■ GA_DBI

■ GAcons

■ GAgrid

■ libGA

STATUS OF DEVELOPMENT

GA, first used operationally in March 1996, is an element of the Prototype Interna-

tional Data Centre (PIDC) at the Center for Monitoring Research (CMR) in Arling-

ton, Virginia, U.S.A. and at the International Data Centre of the Comprehensive

Nuclear-Test-Ban Treaty Organization (CTBTO IDC) in Vienna, Austria.

The first version processed only seismic data and ran in the first automatic process-

ing pipeline along with its predecessor Expert System for Association and Location

(ESAL) [Bac93]. This processing configuration was used during the first year of the

Group of Scientific Experts Third Technical Test (GSETT-3). Several upgrades of the

subsystem have been made [LeB96]; the first to handle auxiliary seismic data in the
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
later automatic pipelines and then to adapt for hydroacoustic [LeB97] and infra-

sonic data types [Kat98]. The subsystem architecture, however, has remained con-

stant as GA has been extended to new data types.

BACKGROUND AND H ISTORY

Ronan Le Bras, Walter Nagy, and Jerry Guern of Science Applications International

Corporation (SAIC) developed and upgraded GA in the period from 1994 to 2000.

GA was first used operationally in March 1996 as an element of the PIDC process-

ing system at the CMR. The IDC of the CTBTO in Vienna, Austria, first installed the

subsystem in May 1998. This document outlines the structure of the GA sub-

system delivered with Release 3 to the IDC.

OPERAT ING ENVIRONMENT

The following paragraphs describe the hardware and commercial-off-the-shelf

(COTS) software required to operate GA.

Hardware

GA was designed to run on a Sun UltraSPARC workstation such as the Sun Ultra 5.

Typically, the hardware is configured with 128 MB of memory and a minimum of

1 GB of magnetic disk

Commerc i a l -Off -The-She l f So f tware

The version of GA described by this document is designed for Solaris 2.7 and

ORACLE 8.1.5. The software was designed to be compliant with the database

schema described in [IDC5.1.1Rev2].
7

G A) S u b s y s t e m

1

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 2: A r ch i tec tu ra l Des i gn

This chapter describes the architectural design of GA and includes the following

topics:

■ Conceptual Design

■ Design Decisions

■ Functional Description

■ Interface Design
G A) S u b s y s t e m

1 9

S o f t w a r e
I D C D O C U M E N T A T I O N

10
Chapter 2: A r ch i tec tu ra l Des i gn

CONCEPTUAL DES IGN

GA automatically interprets seismic, hydroacoustic, and infrasonic detection data

produced by Station Processing to associate signals from a network of stations and

locate seismo-acoustic events using a method similar to generalized beamforming

described in [Rin89], [Tay92], and [Leo93]. First, a preliminary event bulletin is

produced. This bulletin is subsequently reviewed by human analysts to produce the

Reviewed Event Bulletin (REB).

GA was designed to handle the large volumes of data that are needed to monitor

compliance with a CTBT. The key feature that permits handling of these large data

volumes is a grid-based method used to search for event hypotheses. The grid-

based algorithm is a natural way to parallelize the problem; each grid point or sub-

section of the earth is treated individually before assembling the different parts.

One of the main considerations for the design of GA is handling the large number

of preliminary event hypotheses within a reasonable amount of time. A large set of

preliminary event hypotheses is generated in the early stages of GAassoc, the func-

tional unit that assembles event hypotheses. To increase efficiency and allow rapid

access, propagation knowledge is precomputed and stored within a grid file gener-

ated by GAcons.

The GA software processes seismic, hydroacoustic, and infrasonic data together

and uses only parametric data derived from signal and station processing.

Table 1 lists the automatic bulletin products that are currently supported by GA.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
Figure 3 shows the data flow among the five main programs of GA: GAcons,

GAgrid, GA_DBI, GAassoc, and GAconflict.

The GAcons program generates two grid files that are used by GAassoc and GAcon-

flict. The program is a utility that is used to prepare for automatic processing and is

not part of the automatic processing operations. GAcons must be run to update the

grid files every time that a significant change is made to the network, for example,

when a new station is added. The first grid file, or Propagation Knowledge Base

grid file, contains the dynamic travel-time information necessary to automatically

associate detections. The second file, or Static grid file, contains geographical and

static data that are used to check deep events against the historical deep seismicity

background.

The GAgrid program is used to display the content of the Propagation Knowledge

Base grid file generated by GAcons. The grid file contains both the static grid infor-

mation and the dynamic propagation information. GAgrid is a utility program with

a graphical user interface (GUI) component that can be used to review the content

of a grid file.

The suite of GA programs, GA_DBI, GAassoc, and GAconflict, is used in the dynamic

pipeline to produce the automatic Standard Event Lists (SEL1, SEL2, and SEL3).

These programs use the arrival, amplitude, apma, and accessorily, the hydro_assoc and

hydro_arr_group tables as input and produce the origin, origerr, assoc, netmag,

stamag, and event table entries that constitute a bulletin.

TABLE 1: STANDARD PRODUCTS AVAILABLE THROUGH GA

Product Availability Time

SEL1 approximately two hours after real time

SEL2 approximately six hours after real time

SEL3 approximately twelve hours after event time
11

G A) S u b s y s t e m

1

12

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 3. HIGH-LEVEL PROCESSING FLOW SHOWING INTERACTIONS

AMONG DIFFERENT GA PROCESSES

Propagation
Knowledge
Base grid file

D

GAcons

1

travel-time
D

tables
seismicityD

Static grid filesD

GAgrid

2

GA_DBI

3

GAassoc

4

GAconflict

5

ga_tag tableDb

bulletin:

Db

Station Processing

arrival, amplitude, apma,
hydro_assoc,
hydro_arr_group

Db

site, affiliation,
siteauxDb

results:

origin, origerr,
assoc, netmag,
stamag, event

and blockage
User

propagation
data

grid static
data

grid static and
propagation data station

data

station
data

grid static and
propagation data

station
data

grid static
data

event hypothesis
preliminary

event hypothesis
preliminary

event hypothesis

event hypothesis
revised

temporary bulletins:
Db origin, origerr

assoc

historical
seismicity

data
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
GAassoc constructs the initial event hypotheses by associating arrivals from differ-

ent stations using a grid search algorithm. The event hypotheses are placed in a set

of temporary tables including origin, origerr, and assoc, which are later read by

GAconflict. Multiple instances of GAassoc can be run in parallel–each instance

forming event hypotheses for a different sector of the earth. This parallel design

improves processing speed; however, in the configuration used at the IDC with the

current IMS network, there is no need to divide the globe into subsectors. Running

GAassoc using a single global grid achieves the IDC’s timeliness goals.

The preliminary bulletin produced by GAassoc does not contain conflicting associa-

tion sets (that is, phases that are associated with more than one event hypothesis)

as it performs its own conflict resolution within one sector, but it may contain con-

flicting associations between sectors and with previously processed time intervals.

The GAconflict program resolves conflicts between sectors and between time inter-

vals. In addition, the program predicts and associates defining and nondefining

phases after relocating initial event hypotheses, and it applies a number of geo-

physical checks on the associations and events. It modifies or removes associations

that do not pass these checks.

GA_DBI performs a few auxiliary functions and is specific to a particular configura-

tion of GA. For example, in the IDC configuration where seismic auxiliary stations

are used to improve the location of events determined by the primary seismic net-

work, the GA_DBI program is used to tag arrivals from the auxiliary stations in the

ga_tag table. GAassoc and GAconflict use the arrival tags to recognize arrivals from

the auxiliary stations. These arrivals are not given any weight in the weighted-

count calculation. More details are given in “Chapter 7: Detailed Design of

GAgrid” on page 95.
13

G A) S u b s y s t e m

1

14

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
DES IGN DEC IS IONS

The following design decisions pertain to GA.

Prog ramming Language

Each software unit of GA is written in the C programming language unless other-

wise noted in this document. The common programming language supports effi-

cient processing and integration with other components of the IDC system.

Globa l L ib ra r i e s

The software of GA is linked to the following shared developmental libraries:

libgdi.a, libGA.a, meschach.a, libpar.a, libmagnitude.a, libprob.a, libloc.a, libLP.a,

libinterp.a, libgeog.a, libaesir.a, and libstdtime.a.

Database

GA uses an ORACLE database to communicate with other processes by obtaining

input data and writing results. Input is obtained from the arrival, amplitude, apma,

hydro_assoc, and hydro_arr_group database tables in the station processing account

of the database as well as static information from the site, affiliation, and siteaux

tables. The output is written to the origin, origerr, assoc, event, netmag, and stamag

tables in the event list accounts (SEL1, SEL2, and SEL3) of the database. One

instance of the output tables exists for each of the event list accounts. GAconflict

also reads tables origin, origerr, and assoc from the previous event list account (from

SEL1 for the SEL2 processing).

I n te rp rocess Commun ica t ion (IPC)

GA does not use the IPC system internally; however, the GA_DBI, GAassoc, and

GAconflict programs are executed in the context of individual pipelines and are

controlled by the IPC-based Distributed Application Control System (DACS).
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
F i l e sy s tem

GA’s use of the filesystem includes reading the two grid files generated by GAcons,

the attenuation files for computation of the magnitudes, the slowamp.P file for

probability of detection computation, the parameter files, and the travel-time table

files. GA also writes informational and error messages to log files.

Des ign Mode l

The design of GA is primarily influenced by timeliness, flexibility, and reliability

requirements. The timeliness requirements are derived from the requirement to

produce an automatic bulletin to facilitate the analyst’s task of providing the final

bulletin. The basic timeliness requirement is that the software be able to process

data and publish a bulletin faster than real time on average. The timeliness require-

ment and the anticipation of increased data rates from the growing IMS network

led to the partition of GA into two major components: GAassoc and GAconflict.

GAassoc can be run as several parallel instances, each processing the grid points on

a subsector of the earth, thus reducing the total processing time. Thus far, it has

not been necessary to use this feature to process IMS data at the IDC.

The software is sufficiently flexible to allow GA to be configured in a multi-pipeline

model where bulletins are refined after each successive pass. It can also be config-

ured to handle single technology processing or simultaneous processing of the

three waveform technologies with a parameter-settable level of mixing of the

three different technologies. Numerous details of the processing can also be con-

trolled by user parameters.

The software is designed to run on discrete intervals of time. The configuration at

the IDC uses 20-minute intervals in each of three processing pipelines.

Reliability is an important requirement for a software system that must process the

large quantity of data from the IMS network and is called nine times every hour on

a continuous basis. The subsystem was designed to handle a variety of potential

failure modes.
15

G A) S u b s y s t e m

1

16

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
An important design decision for GA was to modularize and group the main func-

tions of GA within a single library. Processes within the main functional units are

shared among these different functional units, and they are grouped in the libGA

library. For instance, the process that locates all preliminary event hypotheses

within GAassoc and GAconflict uses the same function from the libGA library for

both programs. Other examples are the functions that read all GA control parame-

ters and resolve association conflicts.

Database Schema Overv iew

GA uses the ORACLE database for the following purposes:

■ to access the input database tables (arrival, amplitude, apma, hydro_assoc,

and hydro_arr_group) to obtain the results of Station Processing

■ to access the static database tables (site, siteaux, and affiliation) to get the

station and network information

■ to access the output database tables (origin, origerr, assoc, event, netmag,

and stamag) to write bulletin information

■ to exchange data among GA_DBI, GAassoc, and GAconflict (ga_tag and

temporary tables origin_temp_ga, origerr_temp_ga, and assoc_temp_ga)

Table 2 shows the tables used by GA. The Name field identifies the database table.

The Mode field is “R” if GA reads from the table and “W” if the subsystem writes

to the table.

TABLE 2: DATABASE TABLES USED BY GA

Name Mode Description

arrival R contains summary information about arrivals

amplitude R contains arrival-based and origin-based amplitude mea-
surements

apma R contains results of particle motion analysis for a specific
detection
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
hydro_assoc R contains information that connects arrivals to a hydroa-
coustic group of arrivals

hydro_arr_group R contains information about hydroacoustic groups of
arrivals

site R contains station location information; names and
describes a point on the earth where measurements are
made (for example, the location of an instrument or array
of instruments); contains information that normally
changes infrequently, such as station location

siteaux R contains additional site-dependent parameters that are
not included in the site table

affiliation R groups stations into networks

origin R/W contains information describing a derived or reported ori-
gin for a particular event; GA writes an origin record for
each new or relocated event hypothesis

origerr R/W contains summaries of the confidence bounds for origin
estimates; GA writes a record for each event hypothesis

assoc R/W contains information that connects arrivals (entries in the
arrival table) to a particular origin (an entry in the origin
table); GA writes assoc records for every arrival associ-
ated with an event hypothesis

event R/W contains a list of events; GA writes an event record for
each event hypothesis

netmag R/W contains estimates of network magnitudes of different
types for an event; each network magnitude has a unique
magid; station magnitudes used to compute the network
magnitude are in the stamag table; for each event
hypothesis GA writes a netmag record for each magni-
tude type that it estimates

stamag R/W contains station magnitude estimates based upon mea-
surements made on specific seismic phases; values in
stamag are used to calculate network magnitudes stored
in netmag; for each association of an event hypothesis
GA writes one or more stamag records in the stamag table

TABLE 2: DATABASE TABLES USED BY GA (CONTINUED)

Name Mode Description
17

G A) S u b s y s t e m

1

18

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Database En t i t y - re l a t ionsh ip
D iag ram

Figure 4 is an entity-relationship diagram that shows all the database tables used

by GA.

FUNCT IONAL DESCR IPT ION

Figure 5 shows the main functional units of GA and the interactions among them,

with the database tables and the grid files. The GAcons process is a stand-alone

program that builds the Propagation Knowledge Base grid file and the Static grid

file to be used by the pipeline-activated programs GAassoc and GAconflict. The

GAgrid program is a GUI used to visualize the GA grid file containing the knowl-

edge base built by GAcons. GA_DBI is a mission-specific program customized for

the IDC configuration. In that configuration, the main function of the program is

to tag arrivals from the auxiliary network so that they are recognized as such.

ga_tag R/W contains information on the use of arrivals and origins in
GA

origin_temp_ga R/W used by GA to store temporary origins to be communi-
cated between GAassoc and GAconflict

origerr_temp_ga R/W used by GA to store temporary origin error information
for the origins in origin_temp_ga

assoc_temp_ga R/W used by GA to store temporary associations for the ori-
gins in origin_temp_ga

TABLE 2: DATABASE TABLES USED BY GA (CONTINUED)

Name Mode Description
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
FIGURE 4. GA DATABASE TABLE RELATIONSHIPS

amplitude

ampid
arid

parid
amptype

arrival

sta
time
arid

stassid
chanid

assoc
assoc_temp_ga

arid
orid
sta

origin
origin_temp_ga

orid
lat

lon
depth

time
evid

mbid
msid
mlid

origerr
origerr_temp_ga

orid

arid

orid

sta

GA_tag

objtype
id

state

site

sta
ondate

affiliation

net
sta

magid

sta

hydro_assoc

arid
hydro_id

ampid

siteaux

sta
chan
time

hydro_arr_group

hydro_id
net

apma

apmarid
arid

arid

arid-id/objtype=a

evid

hydro_id

netmag

magid
evid
net

orid

stamag

magid
ampid

sta
arid
orid
evid

arid

sta

event

evid
prefor

orid

orid

magid-mbid | mlid

arid

sta
19

G A) S u b s y s t e m

1

 M
a

y
 2

0
0

1
 ID

C
-7

.1
.4

 G
lo

b
a

l A
sso

c
ia

tio
n

 (G
A

) S
u

b
sy

ste
m

▼

C
h

a
p

te
r 2

:

A
rc

h
ite

c
tu

ra
l D

e
s
ig

n

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

20

earth-modelD

user

GAconflict

5

GA_DBI

3

automatic
DACS

pipeline

6

ga_tag tableDb

Resolve
conflicts

Label arrival

Interactive
Processing

data

characteristics

ticron_server/
tuxshell
FIGURE 5. GA FUNCTIONAL DESIGN

GAcons

1

GAgrid

2Static grid fileD

static tablesDb

Station

GAassoc

4

preliminary
Db

Db

Propagation
Knowledge
Base grid file

D

Build
knowledge base

Visualize
knowledge base

Generate
automatic event

Processing results

WaveExpert
Subscription
Subsystem

Station
Processing

 hypotheses
event
hypotheses

revised
Db event

hypotheses

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
Bu i ld ing the Knowledge Base

GAcons is a stand-alone program used to generate two separate files used by GA

during pipeline processing. The first file, the Propagation Knowledge Base grid file,

contains pre-computed information pertaining to the propagation of the various

types of phases among potential source regions and stations. That file is used only

by GAassoc and is essential to build the initial association sets. The second file, the

Static grid file, contains geographical information for the grid used in the associa-

tion process. This file is used only by GAconflict to check on the location of deep

events in areas of deep seismicity. The input to GAcons is the travel-time informa-

tion and network information along with a set of control parameters to produce

the two grid files.

Vi sua l i z i ng the Knowledge Base

GAgrid provides a GUI for examining the contents of the grid file, which contains

the knowledge base. The graphical interface displays grid cell boundaries, conti-

nental and political boundaries, and stations of the network on a global map. For

each cell, a list of stations, phases, and information pertaining to the paths

between stations and cell are displayed in an alphanumerical form. GAgrid can dis-

play the travel-time information for each cell and phase contained in the Propaga-

tion Knowledge Base grid file.

Genera t ing New Automat i c Event s

GAassoc generates new automatic event hypotheses from the results of Station

Processing. The events are generated via an exhaustive grid-search algorithm. In

an initial phase, all possible events satisfying a set of criteria for the set of input

arrivals are formed by examining each grid cell in the input file, one at a time. The

initial set of events is then examined and pruned to eliminate redundancies. The

next step is location and outlier analysis, which removes misfits. Finally, conflict

resolution is applied to the set of located events to arrive at the final set of self-

consistent, newly created event hypotheses. The results are written to temporary

database tables that are refined by GAconflict.
21

G A) S u b s y s t e m

1

22

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Reso lv ing Confl i c t s

GAconflict resolves conflicts between different sets of GA event hypotheses and

refines the results. GAconflict reads up to three sets of bulletin tables (origin, origerr,

and assoc) as input. The first set of bulletin tables are the temporary tables written

by GAassoc; the second set of tables are the output bulletin tables written by

GAconflict for the prior processing interval, and the third (optional) set of tables are

the bulletin tables from a previous pipeline, which can be used as input to the cur-

rent pipeline. (At the IDC, SEL1 tables are read when producing the SEL2, and

SEL2 tables are read when producing the SEL3.) In addition to the bulletin tables,

GAconflict also reads the ga_tag, arrival, amplitude, apma, hydro_assoc, and

hydro_arr_group database tables. The main processes performed by GAconflict are

conflict resolution between adjacent time intervals, prediction of defining and non-

defining phases, and seismological consistency checks on the automatic event

hypotheses. The output tables are origin, origerr, assoc, event, netmag, and stamag,

which collectively contain the automatic bulletin information produced by GA.

Set t ing Up Ar r i va l Tags

GA_DBI performs mission-specific tagging of arrivals for use by the other GA pro-

cesses. The input to GA_DBI are the arrival and affiliation database tables. The out-

put table is ga_tag. At the IDC, the main function of GA_DBI is to tag arrivals from

the auxiliary seismic network so that they are recognized as such by GAassoc and

GAconflict.

INTERFACE DES IGN

This section describes GA’s interfaces with other IDC systems, external users, and

operators.

I n te r f ace w i th Othe r IDC Sys tems

The main mechanism for exchanging data between GA and other IDC subsystems

is through the database and in particular the database tables shown in Figure 2 on

page 5. GA also reads data from the filesystem in a standard manner consistent
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
with the parameter interface and travel-time handling system. GA is invoked on a

specific schedule by the DACS. Typically, GA is called every 20 minutes in each

pipeline.

I n te r f ace w i th Ex te rna l Use r s

In its standard IDC configuration, GA is run in an automatic pipeline to produce

automatic bulletins and has no explicit user interface. However, external users can

use GA on a standalone basis to conduct special studies. In this case, GA is invoked

from the command line with appropriate parameters.

I n te r f ace w i th Opera to r s

GA is normally run in the context of the DACS-controlled automatic pipeline and is

one of the processes in the SEL1, SEL2, and SEL3 pipelines, along with WaveExpert

and DFX-originbeam. Operator intervention is minimal in a normal context and is

only necessary in case of processing failure on a particular time interval or to stop

and restart a pipeline. Processing in the three automatic pipelines is monitored

through the WorkFlow GUI program, which is the main monitoring tool at the dis-

posal of pipeline engineers. The interface between GA and the WorkFlow monitor-

ing tool is the interval table, which contains the following states relating to GA

processing:

GA_DBI-done, GA_DBI-started, GAassoc-done, GAassoc-started,

GAconf-done, GAconf-started, GA-failed, and GA-retry.

Tuxpad is a GUI application that can be used to start and stop the automatic pipe-

lines. Instructions on how to operate Tuxpad are given in [IDC6.2.1].

The log files written by the GA applications are also used for monitoring and diag-

nostics. The log files contain error message output, diagnostic output, and infor-

mation on the timing of different processes within each GA application, including

explicit timing of database reads.
23

G A) S u b s y s t e m

1

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 3: De ta i l ed Des i gn o f
GAassoc

This chapter describes the detailed design of GAassoc and includes the following

topics:

■ Data Flow Model

■ Processing Units

■ Database Description
G A) S u b s y s t e m

1 25

S o f t w a r e
I D C D O C U M E N T A T I O N

26
Chapter 3: De ta i l ed Des i gn o f
GAassoc

DATA FLOW MODEL

GAassoc uses arrival data for the current time interval and the grid information pro-

duced by GAcons to generate self-consistent sets of associated arrivals that may

have resulted from a single event. Association sets that pass various acceptance

tests and the process of conflict resolution become preliminary event hypotheses.

These preliminary events are written to an intermediate set of temporary tables

(origin, origerr, and assoc) called the GA_tables. Several instances of GAassoc may

be run in parallel, each on a different sector, or region, of the earth. Each instance

writes its results to the same intermediate set of temporary tables.

Figure 6 shows the data flow of GAassoc including the main processing units as

well as the data stores used as input and output by these processing units. The

internal Driver structure data store serves as a basic and standard data represen-

tation that is used from the initiation of the association sets to the final output as a

temporary bulletin. A string of processes from the Eliminate Redundant Events to

the Write Event Hypotheses to Database use this basic data structure as input and

output, which allows for a modular design. This design also allows re-use of the

processes within other programs, when appropriate, with the desirable effect of

cutting down on maintenance costs. Some of the same processes, for example,

Resolve Conflicts, are also used by GAconflict (see “Chapter 6: Detailed Design of

GAcons” on page 81). All of the processes shown in Figure 6 take the list of GA

parameters as input. The GA parameters are read by a single process, which is

shared with GAconflict.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design of GAassoc
FIGURE 6. GAASSOC DATA FLOW

arrival,
amplitude, apma,
hydro_assoc,
hydro_arr_group

Db
site, affiliation,

Db siteaux GA parametersD

Propagation
Knowledge
Base
grid file

D

Arrival List
Extract

1

Command-line
Read

Parameters

2

Knowledge
Access

Base

3

Sta_ar structuresM ga_tagDb
GA parameter

M structure

5

Beam_pt
M structures

Large Events
Extract

6

Eliminate

7a

Driver
M

Confirm
Locate and

Preliminary
Event

8

Eliminate

7b 9

Write Event

10

origin, origerr,
Db

Associate

Redundant
Events

Redundant
Events

Resolve
Hypotheses
to Database

GA parameter
M structure

Restrict

4

Phase List

structure

final event hypothesis

event hypothesisevent hypothesisevent hypothesis

event hypothesis

pre-computed propagation data

arrival data arrival tags

GA control parameters

GA

GA control parameters

G
A

 c
on

tr
ol

 p
ar

am
et

er
s

GA control parameters

preliminary event hypothesis

assoc

arrival data site data

parameters

Hypotheses

Conflicts

Arrivals
27

G A) S u b s y s t e m

1

28

▼

Chapter 3:

Detai led Design of GAassoc

S o f t w a r e
I D C D O C U M E N T A T I O N
Table 3 shows the sequence of processes that leads to the production of a newly

formed event in the temporary bulletin database populated by GAassoc.

PROCESS ING UNITS

GAassoc consists of the following processes, as shown in Figure 6:

■ Extract Arrival List (1)

This process reads station and arrival data from the database to produce

Sta_ar structures, an internal representation of the arrivals for the time

interval being processed.

TABLE 3: PROCESSING UNITS AND CORRESPONDING C FUNCTIONS

Processing Unit

Process
Number on
Data Flow Function Name

Extract Arrival List 1 GA_assoc()
GA_build_arrival_query()
GAarrivals()

Read Command-line Parameters 2 GA_read_par()

Access Knowledge Base 3 GA_file()

Restrict Phase List 4 GA_restrict_phases()

Associate Arrivals 5 GA_assoc_loop()

Extract Large Events 6 GA_extirp_large()

Eliminate Redundant Events 7a, 7b GA_redundancy_check()

Locate and Confirm Preliminary
Event Hypotheses

8 GA_locate_list()
GA_locate()

Resolve Conflicts 9 GA_cluster()
GA_assoc_based_CR()

Write Event Hypotheses to Data-
base

10 GA_assoc()
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design of GAassoc
■ Read Command-line Parameters (2)

This process reads parameters from the command line and from par files

and stores the values internally.

■ Access Knowledge Base (3)

This process reads from the Propagation Knowledge Base grid file and

produces the internal representation of this information in the Beam_pt

structures.

■ Restrict Phase List (4)

This process restricts the phase list in the Beam_pt structures to conform

to the list specified in the set of GAassoc parameters.

■ Associate Arrivals (5)

This process forms the initial set of associated arrivals. Associating arrivals

is a fundamental step [IDC5.2.1]. It uses the Sta_ar structures and the

Beam_pt structures as input and produces the initial set of preliminary

events represented in a linked list of Driver structures.

■ Extract Large Events (6)

This process identifies, locates, and extracts event hypotheses with a

large number of defining detections. The purpose of this process is to

reduce processing time when there are large events in the time interval.

■ Eliminate Redundant Events (7a, 7b)

This process eliminates redundant event hypotheses from a set of event

hypotheses. This process appears twice in Figure 6 on page 27; once

before and once after the Locate and Confirm Preliminary Event Hypothe-

ses process.

■ Locate and Confirm Preliminary Event Hypotheses (8)

This process estimates an event’s origin time, latitude, longitude, and

depth based on the travel-time and slowness attributes of the detections

in its association set. Confirmation is the process that verifies that the

events meet the required criteria including a weighted count of arrival

attributes, an arrival-quality test, and a probability-of-detection test. The

weighted-count test compares a weighted sum of arrival attributes
29

G A) S u b s y s t e m

1

30

▼

Chapter 3:

Detai led Design of GAassoc

S o f t w a r e
I D C D O C U M E N T A T I O N
against a threshold value. The arrival-quality test compares the sum of

the arrival-quality functions over all defining arrivals in the event hypoth-

esis with a threshold value. The arrival-quality function is a rational func-

tion of the uncertainty in the measure of slowness and the distance

between the event and the station. It is empirical in nature and has been

found to help in reducing the number of false event hypotheses con-

structed from stochastically consistent sets of arrivals.

■ Resolve Conflicts (9)

This process eliminates the ambiguity and inconsistency of associating an

arrival to multiple events. After this process, an arrival is associated to no

more than one event.

■ Write Event Hypotheses to Database (10)

This process writes the tables composing the temporary bulletin.

The following paragraphs describe the design of these processes.

Ex t rac t A r r i va l L i s t

The purpose of this process is to build and execute the queries that extract the cor-

rect list of arrivals from the database and insert them into internal data structures

for further processing. The process reads the arrivals produced by Station Process-

ing from the database using standard system libraries (libgdi).

The network names and the number of networks for each technology are flexible,

and the process that builds the arrival query is re-usable in other programs.

I nput /P rocess ing /Output

The inputs to this process include control parameters read from a parameter file,

static database tables (affiliation, site, and siteaux) and dynamic database tables

(arrival, amplitude, apma, hydro_assoc, and hydro_arr_group), as indicated in Figure 6

on page 27. The processing populates the Sta_ar data structures and updates the

database ga_tag table, which constitute the output of this process.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design of GAassoc
Cont ro l

The Extract Arrival List process is started when GAassoc is started. When severe

error conditions are encountered, for instance with database input, the program

writes an informative message to standard output, which is usually directed to the

log file, then exits. This process consists of several modules and calls to database

interface functions. Control stays with the main GAassoc program after successful

completion of the process.

I n te r f aces

The Extract Arrival List process interfaces with the libgdi library to acquire its data-

base input. All of the database interface functions from libgdi are called in the main

GA_assoc() program. GA_build_arrival_query() function builds a query

string based on the input control parameter for the current interval, and the string

is passed to the libgdi library for execution. Finally, the results of the query are

parsed by GAarrivals(), which also populates the Sta_ar internal structures.

Er ro r S ta tes

Defensive programming is used throughout the source code for GA, including this

process, by capturing and flagging any error from the functions called within the

process.

Read Command- l i ne Pa ramete r s

This process interfaces with the libpar library and populates the internal parameter

structures. GA uses a large number of parameters to configure its processing, and

some of the parameters are used by several of the programs within the subsystem.

The parameter input is modularized in such a way that it can be used by several

programs. Currently, GAassoc and GAconflict use this process. The purpose of the

Read Command-line Parameters process is to parse the command line, extract the

parameters, and populate the internal parameter structure.
31

G A) S u b s y s t e m

1

32

▼

Chapter 3:

Detai led Design of GAassoc

S o f t w a r e
I D C D O C U M E N T A T I O N
I nput /P rocess ing /Output

The inputs to this process are control parameters read from a parameter file or

directly from the command line. The processing parses these parameters using the

libpar library and writes an internal data structure containing the GA parameters.

Cont ro l

The Read Command-line Parameters process is started when GAassoc is started.

When severe error conditions are encountered, for example with database input,

the program writes an informative message to standard output, which is usually

directed to the log file, then exits. If successful, control is returned to the main

GAassoc program.

I n te r f aces

The Read Command-line Parameters process interfaces with the libpar library to

parse parameters from the command line or parameter file(s).

Er ro r S ta tes

Defensive programming is used throughout the source code for GA, including this

process, by capturing and flagging any error from the functions called within the

process. In this particular case, the errors that may result from calling the subrou-

tines of the libpar library are flagged and captured, an error message is issued indi-

cating the parameter that the process failed to read properly, and the process exits

with a failure condition.

Access Knowledge Base

The purpose of this process is to parse the Propagation Knowledge Base grid file to

read the information relevant to the cell being processed.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design of GAassoc
I nput /P rocess ing /Output

The inputs to this process are the Propagation Knowledge Base grid file written by

the GAcons program and the GA control parameters. The process reads the infor-

mation from the binary grid file and writes internal Beam_pt structures.

Cont ro l

The Access Knowledge Base process is modularized and called within the Associate

Arrivals process. Upon exit control is returned to that process. When severe error

conditions are encountered the program writes an informative message to stan-

dard output, which is usually directed to the log file, then exits.

I n te r f aces

The Access Knowledge Base process uses standard C I/O libraries to access the data

in the Propagation Knowledge Base grid file.

Er ro r S ta tes

Defensive programming is used throughout the source code for GA, including this

process, by capturing and flagging any error from the functions called within the

process. In this particular case, the errors that may result from the memory alloca-

tion functions called from within the process are captured and passed to the calling

routine, which issues an informative message including an error code and exits.

An error code of 20, 21, or 22 indicates an I/O error from reading the grid file. A

value of 20 is given when an attempt at opening the file fails. Values of 21 and 22

are given when an attempt at reading the file fails. If any of these error conditions

occur, the user can check that the file exists at the location specified by the control

parameters and that permissions are sufficient to access it. If the access settings are

confirmed and the error still occurs, the file might have been corrupted (for

instance during a file transfer) and may need to be re-generated by GAcons.

Error codes other than the ones mentioned above (in other words, from 23

through 30) are the result of a memory allocation problem.
33

G A) S u b s y s t e m

1

34

▼

Chapter 3:

Detai led Design of GAassoc

S o f t w a r e
I D C D O C U M E N T A T I O N
Res t r i c t Phase L i s t

The Propagation Knowledge Base grid file contains information about a number of

phases. More phases are in the grid file than are necessary for the purpose of

forming event hypotheses. The purpose of the Restrict Phase List process is to limit

the list to the phases used by GAassoc.

I nput /P rocess ing /Output

The input to this process is the Beam_pt data structure, which contains the propa-

gation knowledge for a given cell point as written by the GAcons program. The

processing consists of pruning the list read from the Propagation Knowledge Base

grid file and restricting it to the list given as a control parameter to GAassoc. The

output of the process is a modified Beam_pt data structure.

Cont ro l

The Restrict Phase List process is modularized and called within the Associate Arriv-

als process. Upon exit control is returned to that process. When severe error condi-

tions are encountered the program writes an informative message to standard

output, which is usually directed to the log file, then exits.

I n te r f aces

The Restrict Phase List process does not interface with any external systems.

Er ro r S ta tes

Defensive programming is used throughout the source code for GA, including this

process, by capturing and flagging any error from the functions called within the

process.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design of GAassoc
Assoc ia te A r r i va l s

The Associate Arrivals process is the algorithmic heart of GAassoc. This process

forms preliminary event hypotheses using an exhaustive grid search algorithm. The

following are system requirements for this process:

■ Form all possible self-consistent, independent event hypotheses that sat-

isfy the criteria of acceptance.

■ Be robust enough to run for all time intervals.

■ Provide a high-quality bulletin to assist the work of analysts.

■ Form events in a timely manner.

I nput /P rocess ing /Output

The inputs to the Associate Arrivals process are the Beam_pt structures and the

Sta_ar structures, as shown in Figure 6 on page 27. The Beam_pt structures con-

tain the information read from the grid file pertaining to the propagation of seismic

and acoustic phases between one grid cell and all the stations in the networks. The

Sta_ar structures contain the information that characterizes the arrivals read from

the database.

The following paragraphs briefly describe the algorithm used to form preliminary

events. A more complete and detailed description is available in [IDC5.2.1].

The algorithm works one grid cell at the time. Event hypotheses are formed for a

cell by identifying a driver arrival from one of the stations in the list of stations that

may see the first-arrival for an event located in the grid cell. This list of stations,

which are allowed to have the first detected arrival (driver), consists of the first N

stations ordered by distance from the grid cell; N is a settable parameter. A driver

arrival must have a slowness vector that is compatible with the current cell. After a

driver arrival has been identified, corroborating arrivals are associated with the

event hypothesis, where the corroborating arrivals are from stations other than the

driver arrival station. Compatibility of the time and slowness attributes with the

preliminary event hypothesis formed by the driver arrival are first established.

Compatibility of the event formed by the driver and each corroborating arrival with
35

G A) S u b s y s t e m

1

36

▼

Chapter 3:

Detai led Design of GAassoc

S o f t w a r e
I D C D O C U M E N T A T I O N
the location of the grid cell are then tested. All stations present in the grid file are

systematically searched for corroborating arrivals after the driver arrival has been

established.

The output of the Associate Arrivals process is a linked list of Driver structures.

The Driver structures (see Table 5 on page 39) contain the preliminary event

hypotheses formed by the process. All other processes that follow within GAassoc

both read and write this type of data structure. The structure is also used through-

out GAconflict. In the course of being transformed by the successive processes, the

Driver structures evolve and may acquire attributes such as an origin record and

assoc records after passing through the Locate and Confirm Preliminary Event

Hypotheses process.

Cont ro l

The Associate Arrivals process is one of an integrated suite of processes that are

triggered sequentially when GAassoc is started. The process is modularized in sub-

routine GA_assoc_loop(); it starts when the subroutine is invoked, and it fin-

ishes either when the subroutine returns control to the main GAassoc program or

exits with an error condition.

I n te r f aces

The primary purpose of the Associate Arrivals process is to form the initial list of

preliminary event hypotheses using grid and arrival information in the Beam_pt

(Table 16 on page 90) and Arrival_Inf (Table 8 on page 42) structures. Figure 7

on page 38 shows the relationships between some of the most important data

structures within the GAassoc program, in particular the relationships between the

Driver (Table 5 on page 39), the Cor_sta (Table 6 on page 41), the Sta_ar

(Table 7 on page 42), and the Arrival_Inf (Table 8 on page 42) data structures.

The information that is read at the beginning of the GAassoc session and remains

static throughout the session is indicated by the gray area. The squares with a dot

represent pointers. The arrows show the link between the pointer and the object to

which they point.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design of GAassoc
Associate Arrivals is the process that first populates the data structures shown out-

side of the gray area in Figure 7 on page 38. The Driver structures are first con-

structed by identifying a driver arrival and then establishing a corroborating list of

arrivals. The Driver structure keeps track of the pointer to the driver arrival as

well as the pointer to the Sta_Ar structure for the driver-arrival station. The cor-

roborating arrivals are organized in a linked list of Cor_Sta structures where the

pointer to the leading member of the list is part of the Driver structure. The

Cor_Sta structure itself contains pointers to the Arrival_Inf structure for the

corroborating arrival and to the Sta_Ar structure for the station of the corroborat-

ing arrival.

Table 4 summarizes the primary content of the data structures used by GAassoc

and GAconflict. Tables 5 through 8 provide the detailed content of these C struc-

tures.

TABLE 4: PRIMARY DATA CONTENT IN STRUCTURES USED BY GA

Data Structure
Name Primary Data Content

Driver This structure contains preliminary event hypothesis data and is
organized in an evolving linked list throughout GAassoc and GAcon-
flict. The linked list is passed from process to process in GAassoc and
GAconflict and can be thought of as an object on which methods
(or processes) perform their operations.

Cor_sta This structure keeps track of the corroborating arrivals within a
Driver structure and is organized in a linked list whose anchor
(pointer to the first element) is an element of the Driver structure.
The structure contains pointers to the corroborating arrivals.

Arrival_Inf This structure stores data that characterize an arrival from database
tables arrival, apma, amplitude, and hydro_assoc. The structures are
populated once and remain unchanged for the duration of GAassoc
processing.

Sta_ar This structure contains information about the stations with arrivals
in the interval to be processed by GA and includes a pointer to the
array of Arrival_Inf containing the arrivals for that station.
37

G A) S u b s y s t e m

1

38

▼

Chapter 3:

Detai led Design of GAassoc

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 7. RELATIONSHIPS AMONG GAASSOC DATA STRUCTURES

Driver structures organized in a linked list.

Cor_sta structures linked list; one per corroborating arrival.

driver

In this case, there are three corroborating arrivals.

Driver 1 Driver 2

Sta_ar structures;
one per station

arrival

Each column represents
the time-ordered arrival
for one of the stations.
As indicated by the
varying height of the
columns, each station
may have a different number
of arrivals within the
time segment illustrated.

array of Arrival_inf
structures

driver
station
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design of GAassoc

TABLE 5: DRIVER STRUCTURE

Type Name Description of Structure and Data Members

Beam_pt* bp pointer to Beam-point

char ph_id[] phase identification (ID) for driver

StaPt* stpt pointer to station information for Beam-point

Phas_Inf* phspt pointer to phase information for this driver-
phase Beam-point

Sta_Ar* sta pointer to station arrival structure for first-arrival
station

Arrival_Inf* ar pointer to Arrival_Inf structure for the
driver arrival for this Driver structure

Cor_Sta* csta pointer to corroborating stations and arrivals list

Dr_list* drl pointer to the Dr_list structure (see Table 9
on page 49) for the driver arrival

double or_time origin time for the driver

double or_tmin minimum origin time for the driver

double or_tmax maximum origin time for the driver

double dr_mag driver magnitude

double qfact quality factor; this is the combined probability
for all corroborating phases to be associated
with this driver

double ar_qual quality of the driver arrival (see “Locate and
Confirm Preliminary Event Hypotheses” on
page 49)

double cr_ev_qual event-based quality as measured for conflict res-
olution

double cr_hydro_qual event-based quality for events containing
hydroacoustic arrivals

double cr_infra_qual event-based quality for events containing infra-
sonic arrivals
39

G A) S u b s y s t e m

1

40

▼

Chapter 3:

Detai led Design of GAassoc

S o f t w a r e
I D C D O C U M E N T A T I O N
double cr_ev_qual event-based quality as measured by conflict res-
olution "goodness-of-fit"

double chi_prob chi-squared probability number from the locator

double res_norm network-based, probability-of-detection residual
norm, measured as residual/s

double weight current weight of driver obtained by adding all
weights for associated arrivals

double ar_qual_weight weight of the preliminary event obtained by
adding all arrival-quality weights

int num_obs total number of arrivals for this driver, including
the driver

int num_def number of defining detections for this driver,
including the driver

int nsta_mag number of stations used to compute mb

int nsta_ml number of stations used to compute ML

int input flag identifying the origin of the preliminary
event; the event is either newly created in GAas-
soc, inherited from a previous bulletin, or inher-
ited from a previous interval of the current
bulletin

int unique_id unique identifying number for the driver (inter-
nal to GA)

double mag_sig uncertainty in mb computation

double mag_sigml uncertainty in ML computation

Origin* origin pointer to structure containing origin record

Origerr* origerr pointer to structure containing origerr record

Assoc* assoc pointer to structure containing assoc record

Assoc_CR* assoc_cr pointer to association-based conflict resolution
information

TABLE 5: DRIVER STRUCTURE (CONTINUED)

Type Name Description of Structure and Data Members
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design of GAassoc

Bool locked_event flag indicating whether or not the event has
been locked by an analyst

int modified book-keeping field to allow processes to track
their own effects on a Driver list

Driver* next pointer to next Driver

Driver* previous pointer to previous Driver

TABLE 6: COR_STA STRUCTURE

Type Name Description of Structure and Data Members

Sta_Ar* sta pointer to Sta_Ar structure for first-arrival station

Arrival_Inf* ar pointer to Arrival_Inf structure for first-arrival sta-
tion given driver

double qual quality of the chi2 association

double ar_qual quality of the arrival (delslo-distance based)

double mag station magnitude of corroborating association

char ph_id[] phase ID for corroborating arrival

char def[2] defining/nondefining flag (d) if defining, else (n)

Dr_list* drl pointer to the Dr_list structure for the driver arrival

Cor_Sta* next pointer to next corroborating station

TABLE 5: DRIVER STRUCTURE (CONTINUED)

Type Name Description of Structure and Data Members
41

G A) S u b s y s t e m

1

42

▼

Chapter 3:

Detai led Design of GAassoc

S o f t w a r e
I D C D O C U M E N T A T I O N

TABLE 7: STA_AR STRUCTURE

Type Name Description of Structure and Data Members

char name station name

int nar number of arrivals associated to this station

int site_index index into site table

Bool array TRUE, if station is an array

Bool hydro TRUE, if station is a hydroacoustic station

Bool infra TRUE, if station is an infrasonic station

Arrival_Inf* ar pointer to array of arrivals

TABLE 8: ARRIVAL_INF STRUCTURE

Type Name Description of Structure and Data Members

long arid arid for this arrival

double time epoch time of arrival

char iphase reported initial phase

char ml_chan channel read from amplitude table for ML cal-
culation

char mb_chan channel read from amplitude table for mb cal-
culation

double deltim measured time uncertainty

double deltim_mod modelled time uncertainty

double azimuth measured azimuth

double delaz uncertainty in azimuth

double slow measured slowness

double delslo uncertainty in slowness

double amp measured amplitude from the amplitude table
(amptype = A5/2)
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design of GAassoc
double delamp measured amplitude uncertainty

double ml_amp amplitude from the amplitude table
(amptype = SBSNR)

double ml_snr signal-to-noise ratio (snr) from amplitude.amp-
type = SBSNR

double per measured period

double ml_per measured period for ML

double logat measured log amplitude/period

double apma_snr snr from apma table

double apma_hvrat horizontal to vertical ratio from apma table

double apma_rect rectilinearity from apma table

double weight weight of observation based on user-defined
coefficients; each of the time, azimuth, and
slowness data have a coefficient

double belief belief attribute from assoc table

Stassid_pt* staspt pointer to stassid structure, if necessary;
NULL if no valid stassid exists

int assoc flag; if assoc = 0, arrival not associated

int ml_id ID of the amplitude record for ML amplitude
measurements; passed to the stamag record if
the arrival is associated and the amplitude is
used in ML calculations

int mb_id ID of the amplitude record for mb amplitude
measurements; passed to the stamag record if
the arrival is associated and the amplitude is
used in mb calculations

Bool wc_restricted flag; if TRUE, do not count in weighted count

Bool aa_processed flag; if TRUE, arrival already processed

Bool probdet_restricted flag; if TRUE do not take into account for
probability of detection

TABLE 8: ARRIVAL_INF STRUCTURE (CONTINUED)

Type Name Description of Structure and Data Members
43

G A) S u b s y s t e m

1

44

▼

Chapter 3:

Detai led Design of GAassoc

S o f t w a r e
I D C D O C U M E N T A T I O N
Er ro r S ta tes

Defensive programming is used throughout the source code for GA, including this

process, by capturing and flagging any error from the functions called within the

process. For serious errors captured in return, such as a memory allocation error,

the process writes an informative error message, then exits; for others, a warning

message is written to the log file.

Ex t rac t La rge Event s

The primary purpose of the Extract Large Events process is to reduce the overall

processing time when the data contain one or more large events that have a large

number of detections. The presence of a large event in a time interval usually

causes GAassoc to form a large number of preliminary event hypotheses, each con-

taining a subset of the arrivals from the large event.

Bool locked_association flag; if TRUE do not disassociate

Bool extracted_assoc flag; If TRUE do not predict

Bool requested flag; requested arrival

Bool analyst_reviewed flag; analyst-reviewed arrival

Bool driver_restricted flag; if TRUE, the arrival is not used as a driver
arrival

int drl_count driver (event) count associated with this arrival
(detection)

Dr_list* drl_anchor pointer to the first Driver in the linked list of
Drivers to which this arrival is associated

Dr_list* drl_current pointer to current Dr_list structure

TABLE 8: ARRIVAL_INF STRUCTURE (CONTINUED)

Type Name Description of Structure and Data Members
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design of GAassoc
The Extract Large Events process is designed to identify and extract large events

from a list of preliminary event hypotheses and to resolve the conflicts with events

containing a subset of its arrivals at an early stage in the processing. Conflicts are

resolved in favor of the large event, with the result that the total number of event

hypotheses is considerably reduced and the subsequent processing time is similarly

reduced.

The following system requirement is addressed by the Extract Large Events process:

■ The process shall be efficient enough to form events reflecting natural

variations in seismicity in real time.

I nput /P rocess ing /Output

The Extract Large Events process uses the linked list of Driver structures and the

GA parameters as input. The algorithm used to extract large events is explained in

[IDC5.2.1]. This paragraph presents an overview of the algorithm. Figure 8 shows

a detailed data flow and control flow of the process. A large event is identified by

the number of its defining phases. The threshold for the minimum number of

defining phases of a large event is set by a user parameter. After a large event is

identified, it undergoes a split analysis to remove any degenerate cases. Degener-

ate cases include instances of two or more arrivals at the same station or the same

arrival identified as two different phases. These conditions are allowed previous to

this stage of GAassoc processing. After the Split Analysis process, the event is

located and confirmed using the Locate and Confirm Preliminary Event Hypotheses

process. Finally, all conflicts existing for the arrivals of the large event are resolved

in favor of the large event. This is a recursive algorithm, where the largest event in

the set is processed first. The output of the Extract Large Events process is a linked

list of Driver structures.
45

G A) S u b s y s t e m

1

46

▼

Chapter 3:

Detai led Design of GAassoc

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 8. EXTRACT LARGE EVENTS PROCESSING SEQUENCE

Cont ro l

The Extract Large Events process is modularized within one single subroutine,

GA_extirp_large(), called from within the main GAassoc program. After exe-

cution of the process, control returns to the main program.

I n te r f aces

The primary data structure exchanged between the different modules of the

Extract Large Events process is the linked list of Driver structures. The linked list is

passed as a handle between the different modules, as well as between the main

program and this process.

Driver structuresMDriver structuresM

in large event

Remove

2

confirm
Locate and

large event

3

conflicts in
Resolve

favor of
large event

4

Driver structures

More
large events?

no

yes

large event
Identify

1

M

degeneracies

event hypothesis data

Return

Driver structuresM
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design of GAassoc
Er ro r S ta tes

Defensive programming is used throughout the source code for GA, including this

process, by capturing and flagging any error from the functions called within the

process. For this particular process, a negative return code is passed to the main

program if a memory allocation error is encountered.

E l im ina te Redundant Event s

The purpose of the Eliminate Redundant Events process is to reduce the number of

preliminary event hypotheses formed at the exhaustive search stage by eliminating

redundancies and thus to reduce the overall processing time in GAassoc. The fol-

lowing system requirement leads to the design of the Eliminate Redundant Events

process:

■ The process shall form events in a timely manner.

The very existence of this process is based on this requirement. Without Eliminate

Redundant Events, it is unlikely that GA processing would be efficient enough to

satisfy the real-time processing constraint.

Figure 6 on page 27 shows two instances of Eliminate Redundant Events (7a and

7b). This non-conventional data flow diagram illustrates that the process is used

twice within the GAassoc software unit, once before and once after the Locate and

Confirm Preliminary Event Hypotheses process. It is used with different parameters

at these two stages. After the Locate and Confirm Preliminary Event Hypotheses, the

condition that the driver arrivals be the same for two Driver structures to be con-

sidered redundant is relaxed.

I nput /P rocess ing /Output

Inputs to the Eliminate Redundant Events process are the linked list of Driver

structures and the GA control parameters. During processing each Driver is

examined once to determine whether or not it is a subset of another Driver. For a

Driver to be a subset of another Driver, it must be made up of the same arrivals

identified as the same phases. An additional constraint for redundancy, which is
47

G A) S u b s y s t e m

1

48

▼

Chapter 3:

Detai led Design of GAassoc

S o f t w a r e
I D C D O C U M E N T A T I O N
that the same arrival be the driver arrival of both the current Driver and its super-

set, can be imposed. An input parameter controls whether or not this constraint is

applied. The constraint is applied the first time that the Eliminate Redundant Events

process is called, before the Locate and Confirm Preliminary Event Hypotheses pro-

cess. However, it is dropped the second time it is called, after the Locate and Con-

firm Preliminary Event Hypotheses process. Figure 9 illustrates the relationship

between the Driver and Arrival_Inf data structures, with the pointer to the

linked list of Dr_list data structures pointing back to the Driver structure to

which the arrival belongs. The Dr_list data structure, which is defined in Table 9,

is a linked list of pointers to Driver structures. The output of this process is a

linked list of Driver structures where the redundant event hypotheses repre-

sented by the structures have been eliminated.

FIGURE 9. DOUBLE-LINK RELATIONSHIP BETWEEN DRIVER STRUCTURES

AND ARRIVAL_INF STRUCTURES

the time-ordered arrivals
for one of the stations.

This column represents

array of Arrival_inf

driver arrival

driver station

Dr_List structures
organized in a linked list

Sta_ar structures
one per station
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design of GAassoc

Cont ro l

The Eliminate Redundant Events process is modularized within one function. Con-

trol is passed back to the main GAassoc program when the process has executed.

Er ro r S ta tes

Defensive programming is used throughout the source code for GA, including this

process, by capturing and flagging any error from the functions called within the

process.

Loca te and Confirm P re l im ina ry
Event Hypotheses

The purpose of the Locate and Confirm Preliminary Event Hypotheses process is to

locate the event hypotheses and to make sure that they satisfy the confirmation

criteria for the following tests:

■ weighted-count test

This test guarantees that events have a minimum number of defining

observations established by a weighted-count threshold. The weighted

count is a sum of all defining observations where each observation (time,

slowness, azimuth) is weighted with a user-defined coefficient.

■ arrival-quality test

This test guarantees that event arrivals have sufficiently well-defined

slowness vectors.

TABLE 9: DR_LIST STRUCTURE

Type Name Description of Structure and Data Members

Driver* dr pointer to current Driver

Dr_list* prev pointer to previous Dr_list structure

Dr_list* next pointer to next Dr_list structure
49

G A) S u b s y s t e m

1

50

▼

Chapter 3:

Detai led Design of GAassoc

S o f t w a r e
I D C D O C U M E N T A T I O N
■ outliers test

This test guarantees that events do not have associated arrivals with

unacceptably large residuals.

A more extensive description of each of these tests is given in [IDC5.2.1]. This sec-

tion describes the functional aspects of the Locate and Confirm Preliminary Event

Hypotheses process.

The following system requirements are satisfied by the Locate and Confirm Prelimi-

nary Event Hypotheses process:

■ The subsystem shall produce an automatic bulletin compliant with the

database schema [IDC5.1.1Rev2].

■ The subsystem shall produce events that satisfy the weighted-count and

will have no outliers for any of the time and slowness attributes.

■ The subsystem shall produce an acceptable false alarm rate.

I nput /P rocess ing /Output

The inputs to the Locate and Confirm Preliminary Event Hypotheses process are the

Driver structures and the parameters that control the location and event confir-

mation modules. The processing applied sends the association set to the locator

function of the libloc library [Bra88] and applies the event definition tests men-

tioned in the preceding section to the event hypotheses. The output of the process

is a linked list of Driver structures where the preliminary event hypotheses are

located and pass all the event definition tests.

Cont ro l

The Locate and Confirm Preliminary Event Hypotheses process is started when the

main GAassoc program invokes it. This process is modularized in a single subrou-

tine, GA_locate_list(), which is called by the main program, and attempts to

locate all preliminary event hypotheses in the list. Within GA_locate_list(), the

GA_locate() subroutine locates a single event and may be called several times
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design of GAassoc
for the same event with different control parameters, for instance with fixed-depth

or free-depth conditions. The sequential and iterative calls to the GA_locate()

function are described in more detail in [IDC5.2.1].

I n te r f aces

This process interfaces with the libloc library at the level of the GA_locate()

function.

Er ro r S ta tes

Defensive programming is used throughout the source code for GA, including this

process, by capturing and flagging any error from the functions called within the

process.

Reso lve Confl i c t s

The Resolve Conflicts process is the final algorithmic step in GAassoc. The purpose

of the process is to produce a final list of event hypotheses where all associated

arrivals are associated to one and only one event. The input to the process is a list

of event hypotheses that have undergone location, but where arrivals may be

associated to several event hypotheses. A detailed explanation of the heuristic

approach to resolving the conflicts is given in [IDC5.2.1]. The following system

requirements are met by this process:

■ The bulletin produced by GA shall be free of conflicting associations.

■ The Resolve Conflicts process shall be sufficiently efficient to meet timeli-

ness requirements.

I nput /P rocess ing /Output

The inputs to Resolve Conflicts are the linked list of Driver structures and the GA

control parameters. The process that leads to a conflict-free bulletin is an iterative

process where events are ranked according to their size and quality and processed
51

G A) S u b s y s t e m

1

52

▼

Chapter 3:

Detai led Design of GAassoc

S o f t w a r e
I D C D O C U M E N T A T I O N
in order of decreasing size. A detailed description of the conflict resolution algo-

rithm is given in [IDC5.2.1]. The output of the process is a linked list of Driver

structures, similar to the input linked list.

Cont ro l

The Resolve Conflicts process is started when the GAassoc program is started. The

functions GA_cluster() and GA_assoc_based_CR() are called directly from

the main GAassoc program. Control is returned to the main program when the

functions have performed their task.

Er ro r S ta tes

Defensive programming is used throughout the source code for GA, including this

process, by capturing and flagging any error from the functions called within the

process. When a severe error is encountered, an informative error message is writ-

ten to the log file and the program exits. For non-fatal errors, a message is written

to the log file but execution is allowed to proceed uninterrupted.

Wri te Event Hypotheses to
Database

The purpose of the Write Event Hypotheses to Database process is to prepare the

data in the internal Driver structures for output to the database tables constitut-

ing the automatic bulletin. The basic system requirement satisfied by this process is

that GA produce an automatic bulletin compliant with the database schema

[IDC5.1.1Rev2].

I nput /P rocess ing /Output

The inputs to the Write Event Hypotheses to Database process are the linked list of

Driver structures and the GA control parameters. The processing recasts the

information about the event hypotheses contained in the Driver structures in a

format intelligible to the libgdi library. The outputs of the process are the origin,

origerr, and assoc temporary database table entries.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design of GAassoc
Cont ro l

The Write Event Hypotheses to Database process is started when the GAassoc pro-

gram is started. This process is not modularized in a function, but rather is part of

the task performed by the main GAassoc program. This design keeps the interface

to the database at the level of the main program.

I n te r f aces

The Write Event Hypotheses to Database process populates the database tables

from the Driver structures. It uses the libgdi library as an interface between GAas-

soc and the relational database management system (RDBMS).

Er ro r S ta tes

Defensive programming is used throughout the source code for GA, including this

process, by capturing and flagging any error from the functions called within the

process. In this particular case, errors resulting from calling the libgdi functions are

captured, the error-reporting functions from the libgdi library are called, and the

message is written to the log file. The program then exits after calling the rollback

function of libgdi and closing the database connection using the appropriate libgdi

function.

DATABASE DESCR IPT ION

GAassoc interacts with the database through the Generic Database Interface (GDI).

The main interactions of GAassoc with the database are at the input stage, where

the arrivals from the appropriate networks are read, and at the output stage where

the automatic bulletin is written to temporary database tables.

Database Des i gn

GAassoc uses the database for reading the arrival data written by Station Process-

ing, for reading static station and network data, and for writing temporary bulletin

tables. The entity-relationship diagram of the schema used by GA is shown in Fig-
53

G A) S u b s y s t e m

1

54

▼

Chapter 3:

Detai led Design of GAassoc

S o f t w a r e
I D C D O C U M E N T A T I O N
ure 4 on page 19. The figure shows all of the tables used by GA. The relationships

shown reflect the specific relationships in the context of GA. For instance, the rela-

tionship between origin and origerr is shown as one-to-one when, in general, this is

a one-to-zero relationship [IDC5.1.1Rev2]. For GAassoc specifically, the origin,

origerr, and assoc tables are named origin_ga_temp, origerr_ga_temp, and

assoc_ga_temp, as indicated on the diagram. GAassoc accesses most of the tables

shown on the entity-relationship diagram, except for the event, netmag, and stamag

tables, which are accessed only by GAconflict.

Database Schema

Table 10 shows the usage of database tables by GAassoc. For each table used, the

third column shows the purpose for reading or writing each attribute.

TABLE 10: GAASSOC DATABASE USAGE

Table Action Usage

site reads • sta, ondate, and offdate for record identification

• lat, lon, and elev for location information

siteaux reads • sta for record identification

• nois, noissd, rely, and snthrsh for detection probability
calculation

affiliation reads • sta for record identification

• net for identifying auxiliary network, or station elements
for creating station intervals

arrival reads • sta and arid for record identification

• time to relate the arrival to the origin time of a potential
event and help in location

• iphase to identify the arrival’s initial phase

• deltim to take the timing error into account

• azimuth, delaz, slow, and delslo to use in constraining
associations and in location

• stassid to identify the arrival as belonging to a local or
regional group at one station
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design of GAassoc
amplitude reads • arid, ampid, sta, and chan for record identification

• amp, snr, and per to use in magnitude computation

• amptype to identify the type of record (either from the
STA/LTA or the A5/2 measurement)

apma reads • arid for record identification

• snr, hvrat, and rect for use in the restricted shear phase
test

ga_tag reads/
writes

• ID for record identification

• state to identify the tag associated to the arrival

hydro_assoc reads • arid and hydro_id for record identification

hydro_arr_group reads • arid and hydro_id for record identification

• az1, az2, nhydarr, delaz, and hyd_grp_phase to constrain
the association of hydroacoustic groups to an event

assoc_ga_temp writes • complete records for an event hypothesis as populated
by the locator library (libloc); this table is used to pass
information to GAconflict

origin_ga_temp writes • complete record for an event hypothesis as populated by
the locator library (libloc); this table is used to pass infor-
mation to GAconflict

origerr_ga_temp writes • complete record for an event hypothesis as populated by
the locator library (libloc); this table is used to pass infor-
mation to GAconflict

TABLE 10: GAASSOC DATABASE USAGE (CONTINUED)

Table Action Usage
55

G A) S u b s y s t e m

1

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 4: De ta i l ed Des i gn o f
GAconfl i c t

This chapter describes the detailed design of GAconflict and includes the following

topics:

■ Data Flow Model

■ Processing Units

■ Database Description
G A) S u b s y s t e m

1 57

S o f t w a r e
I D C D O C U M E N T A T I O N

58
Chapter 4: De ta i l ed Des i gn o f
GAconfl i c t

DATA FLOW MODEL

GAconflict is a program designed to resolve conflicts between event association

sets formed in successive time segments, as well as between different sectors of

the earth (if GAassoc has been configured to run as separate instances). In normal

automatic processing, GAconflict is run immediately after GAassoc and is the pro-

gram that produces the automatic bulletin for a given pipeline. In addition to its

primary mission in resolving conflicts, GAconflict predicts and associates defining

and nondefining phases to complete the formation of event hypotheses. GAcon-

flict can also read bulletin data from the results of a previous processing pipeline;

for instance, the results of the SEL2 pipeline can be read by the GAconflict instance

in the SEL3 pipeline.

Figure 10 shows the data flow of GAconflict including the main processing units as

well as the data stores used as input and output by these processing units. As in

the case of GAassoc, the internal Driver structures serve as a standard data repre-

sentation for event hypotheses. A string of processes from Read Event Information

to Write Event Hypotheses to Database use this basic data structure as I/O, allowing

for a modular design. All of the processes shown on Figure 10 take the list of GA

parameters as input. The GA parameters are read by a single process, which is

shared with GAassoc.

Table 11 on page 60 shows the sequence of processes in GAconflict corresponding

to Figure 10. The process numbers in the table map to those in the figure.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design of GAconflict
FIGURE 10. GACONFLICT DATA FLOW

Locate and
4

5

Resolve

6b

Extract

1

Arrival List

Confirm
Preliminary

Conflicts

Read Event

3

Predict

7

Phases
 Nondefining

Check

8

Write
9

2

Read
Command-line

Parameters

Static grid file

Driver structures

Sta_ar structures

station data:
site,
affiliation,
siteaux

Predict
Defining
Phases

dynamic tables:
arrival, amplitude,

GA parameter
M structure

GA parameter
M structure

ga_tagDb

origin_temp_ga,Db

assoc_temp_ga

temporary bulletin:

origin, origerr,Db
assoc

arrival

Db
assoc

origin, origerr,Db
assoc

M

arrival tags

origin, origerr,
Db assoc, event,

stamag, netmag

revised

D

M

GA parameters

G
A

 p
ar

am
et

er
s

arrival data

event
hypotheses

event

ev
en

t
hy

po
th

es
es

ev
en

t
hy

po
th

es
es

event

ev
en

t
hy

po
th

es
es

GA parameters

hypotheses

static grid
data

Db Db

Information

origin, origerr,Db
assoc

previous bulletin:

Resolve

6a

Conflicts

origerr_temp_ga,

Event

to Database

Consistency

event hypotheses

GA parametersD

current bulletin:
origin, origerr,

previous bulletin:

data

current bulletin:

preliminary
event
hypotheses

hypotheses

Hypotheses

apma, hydro_assoc,
hydro_arr_grp

Event
Hypotheses
59

G A) S u b s y s t e m

1

60

▼

Chapter 4:

Detai led Design of GAconflict

S o f t w a r e
I D C D O C U M E N T A T I O N
TABLE 11: PROCESSING UNITS AND CORRESPONDING C FUNCTIONS

Processing Unit

Process
Number on
Data Flow Function Name

Extract Arrival List 1 GAconflict()
GA_build_arrival_query()
GAarrivals()

Read Command-
line Parameters

2 GA_read_par()

Read Event Infor-
mation

3 GAconflict()

Locate and Con-
firm Preliminary
Event Hypotheses

4 GA_locate_list()
GA_locate()

Predict Defining
Phases

5 GA_predict_def()

Resolve Conflicts 6 GA_cluster()
GA_assoc_based_CR()

Predict Nondefin-
ing Phases

7 GA_predict()

Check Consis-
tency

8 GAconflict()
GA_coda_name_check()
GA_check_HT_pairs()
GA_check_depth()
GA_check_range()
GA_rm_incomplete_hydro_groups()
GA_check_predicted_time_residuals()
GA_check_regional_pairs()
GA_check_isolated_secondary()
GA_check_duplicate()
GA_check_max_magnitude_diff()
GA_check_small_deep_events()
GA_check_phase_order ()
GA_check_mag_def()

Write Event
Hypotheses to
Database

9 GAconflict()
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design of GAconflict
PROCESS ING UNITS

GAconflict consists of the following processes, as shown in Figure 10 and listed in

Table 11:

■ Extract Arrival List (1)

This process reads station and arrival data from the database to produce

the Sta_ar structures, an internal representation of the arrivals for the

time interval being processed.

■ Read Command-line Parameters (2)

This process reads command-line parameters and parameters in parame-

ter files and stores the values internally as GA control parameters.

■ Read Event Information (3)

This process reads from the various sets of bulletin tables and stores the

information in internal Driver structures.

■ Locate and Confirm Preliminary Event Hypotheses (4)

This process estimates an event’s origin time, latitude, longitude, and

depth based on the travel-time and slowness attributes of the detections

in its association set. Confirmation is the process that verifies that the

events meet the required criteria including a weighted count of arrival

attributes, an arrival-quality test, and a probability-of-detection test. The

weighted-count test compares a weighted sum of arrival attributes

against a threshold value. The arrival-quality test compares the sum of

the arrival-quality functions over all defining arrivals in the event hypoth-

esis with a threshold value. The arrival-quality function is a rational func-

tion of the uncertainty in the measure of slowness and the distance

between the event and the station. It is empirical in nature and has been

found to help in reducing the number of false event hypotheses con-

structed from stochastically consistent sets of arrivals.

■ Predict Defining Phases (5)

This process predicts defining phases specified by the GA control param-

eter that lists the defining phases. The prediction is based on the location

of the events and takes into account the error ellipse and the uncertainty
61

G A) S u b s y s t e m

1

62

▼

Chapter 4:

Detai led Design of GAconflict

S o f t w a r e
I D C D O C U M E N T A T I O N
in the attributes (time, azimuth, and slowness) of the arrival. The algo-

rithm predicts phases that are not yet associated and conducts an

exhaustive search for all possible associations. The best association is

picked out of the possible associations based on a chi-square test.

■ Resolve Conflicts (6)

This process eliminates the ambiguity and inconsistency of associating an

arrival to multiple events. After this process, an arrival is associated to no

more than one event.

■ Predict Nondefining Phases (7)

This process predicts nondefining phases specified by a GA control

parameter listing the phases to be predicted. The prediction is based on

the location of the events, but in contrast with the Predict Defining Phases

process, does not use the error ellipse. However, the uncertainty in the

attributes (time, azimuth, and slowness) of the arrival are taken into

account. The algorithm predicts phases that are not yet associated and

conducts an exhaustive search for all possible associations. The best asso-

ciation is picked out of the possible associations based on a chi-square

test.

■ Check Consistency (8)

Before the event hypothesis is written to the database, a number of geo-

physical checks are performed to ensure consistency and adherence to

event acceptance criteria.

■ Write Event Hypotheses to Database (9)

This process casts the internal representation of the event hypotheses

into their external representation in the database using tables origin,

origerr, assoc, event, netmag, and stamag.

The following paragraphs describe the design of these processes.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design of GAconflict
Ex t rac t A r r i va l L i s t

Similar to the process with the same name in GAcons, the purpose of this process is

to build and execute the queries that read the correct list of arrivals from the data-

base and insert them into internal structures for further processing. The process

uses standard system libraries (for example, libgdi) to read the arrivals produced by

Station Processing from the database based on the time interval to be processed

and the list of events to be read for this GAconflict session. This list of events is

established by the Read Event Information process, which is specific to GAconflict.

The network names and the number of networks for each technology are flexible,

and the module that builds the arrival query is re-usable in other programs.

I nput /P rocess ing /Output

The inputs to this process are GA control parameters read from a parameter file,

including the start- and end-time, static database tables (affiliation, site, and

siteaux), dynamic database tables (arrival, amplitude, apma, hydro_assoc, and

hydro_arr_group), as well as the tables that describe events in the temporary bulletin

(origin_temp_ga, origerr_temp_ga, and assoc_temp_ga), the current bulletin (origin,

origerr, and assoc), and the previous bulletin (origin, origerr, and assoc), as indicated

on Figure 10 on page 59. The processing populates the Sta_ar data structures

and updates the ga_tag database table, which are the outputs of this unit.

Cont ro l

The Build Static Grid process is started when GAconflict is started. When severe

error conditions are encountered, for instance with database input, the program

writes an informative message to standard output, which is usually directed to the

log file, then exits.
63

G A) S u b s y s t e m

1

64

▼

Chapter 4:

Detai led Design of GAconflict

S o f t w a r e
I D C D O C U M E N T A T I O N
I n te r f aces

The Extract Arrival List process uses the libgdi library to acquire its database input.

All of the database interface functions from libgdi are called in the main

GAconflict() program. GA_build_arrival_query() builds a query string

based on the input control parameter for the current interval and the list of events

that should be read for this interval. The query string is passed to the libgdi library

for execution. Finally, the results of the query are parsed by GAarrivals(), which

also populates the Sta_ar internal structures.

Er ro r S ta tes

Defensive programming is used throughout the source code for GA, including this

process, by capturing and flagging any error from the functions called within the

process. In this particular case, the process is mostly a series of calls to the libgdi

subroutines. After these calls are made, the libgdi error handling subroutine is

called, any error messages are printed to the log file, the database connection is

closed, and the process exits.

Read Command- l i ne Pa ramete r s

Read Command-line Parameters is used both by GAassoc and GAconflict. Refer to

“Read Command-line Parameters” on page 31 for a description of this process.

Read Event In fo rmat ion

This process selects the appropriate GA event hypotheses from the temporary

tables written by GAassoc, from the final bulletin tables for the current pipeline,

and from the GA bulletin of a previous pipeline.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design of GAconflict
I nput /P rocess ing /Output

The inputs to this process are the temporary bulletin database tables written by

GAassoc, the bulletin tables that contain the final bulletin, the bulletin tables from a

previous pipeline, and the Sta_ar structures. The processing reads the appropriate

events from the database tables and sets up, as output, the linked list of Driver

structures for further processing.

Cont ro l

The Read Event Information process is an integral part of the GAconflict main pro-

gram and is activated when the program is activated. Control passes to the libgdi

functions to interface with the database, and the process exits when an error con-

dition is encountered within the libgdi functions.

I n te r f aces

The Read Event Information process interfaces with the libgdi library at the level of

the GAconflict main program.

Er ro r S ta tes

Defensive programming is used throughout the source code for GA, including this

process, by capturing and flagging any error from the functions called within the

process. In this particular case, the process is mostly a series of calls to the libgdi

subroutines. After these calls are made, the libgdi error handling subroutine is

called, any error messages are printed to the log file, the database connection is

closed, and the process exits.

Loca te and Confirm P re l im ina ry
Event Hypotheses

This is the same process as in GAassoc. Refer to “Locate and Confirm Preliminary

Event Hypotheses” on page 49 for a description of this process.
65

G A) S u b s y s t e m

1

66

▼

Chapter 4:

Detai led Design of GAconflict

S o f t w a r e
I D C D O C U M E N T A T I O N
Pred i c t Defin ing Phases

The Predict Defining Phases process completes events that have been located and

confirmed with additional, previously non-associated defining detections. This step

is necessary because the automatic association process may remove detections

from the association set at some steps of the algorithm, such as Resolve Conflicts or

outlier analysis within the Locate and Confirm Preliminary Event Hypotheses process.

The Predict Defining Phases process provides a mechanism for reassociating arrivals

consistent with the event hypotheses. The following algorithmic steps are taken

within the Predict Defining Phases process:

■ Predict defining phases at stations that are not already associated.

■ Use the error ellipse when predicting time and slowness attributes.

■ Relocate the event, and perform an outlier analysis if one or more defin-

ing phases were added.

I nput /P rocess ing /Output

The Predict Defining Phases process takes the linked list of Driver structures and

the GA parameters as input. For each event, the time, azimuth, and slowness

attributes of defining phases are predicted at stations that are not associated to the

event. The error ellipse, model errors, and measurement errors are taken into

account when predicting the time and slowness for the defining phases. The out-

put of this process is a linked list of Driver structures. The algorithm used for the

prediction is described in detail in [IDC5.2.1].

Cont ro l

The Predict Defining Phases process is modularized in a single function, which is

called from the main GAconflict program.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design of GAconflict
I n te r f aces

The Predict Defining Phases process, like most processes within GAassoc and

GAconflict, uses the Driver structure as its main argument and transforms this

structure by adding predicted arrivals to the event hypotheses. In addition to the

Driver linked list, the process takes the GA parameters as arguments.

A special structure, called the Pred_triplet, is defined and used in this process

and in the Predict Nondefining Phases process. It is used to decide the arrival that

best fits the current event and phase out of a set of several arrivals. This structure is

shown in Table 12.

TABLE 12: PRED_TRIPLET STRUCTURE

Type Name Description of Structure and Data Members

Sta_Ar* stpt pointer to Sta_Ar structure for this arrival

char* sta pointer to station name

char* phase pointer to phase name

Arrival_Inf* ar pointer to arrival

double fit chi-square fit of this arrival to current event

double timeres time residual for this arrival

double azres azimuth residual

double slores slowness residual

double delta distance between station and event

double seaz station to event azimuth

double esaz event to station azimuth

Pred_triplet* next pointer to the next Pred_triplet structure
67

G A) S u b s y s t e m

1

68

▼

Chapter 4:

Detai led Design of GAconflict

S o f t w a r e
I D C D O C U M E N T A T I O N
Er ro r S ta tes

Defensive programming is used throughout the source code for GA, including this

process, by capturing and flagging any error from the functions called within the

process. In this particular case, an error code is returned to the main GAconflict

program when an error condition is encountered. An informative error message is

written to the log file before control is returned to the main program.

Reso lve Confl i c t s

This process is identical to the Resolve Conflicts process in GAassoc. Refer to

“Resolve Conflicts” on page 51 for a description of this process.

Pred i c t Nondefin ing Phases

The purpose of the Predict Nondefining Phases process is to supplement existing

events with nondefining, usually late-arriving phases whose list is specified by a

parameter.

I nput /P rocess ing /Output

The inputs to the Predict Nondefining Phases process are the linked list of Driver

structures and the GA control parameters. For each event, the time, azimuth, and

slowness attributes of nondefining phases are predicted at stations that already

possess defining, primary phases. Model and measurement errors are used when

predicting the time and slowness for the predicted defining phases. The following

algorithmic steps are taken within the Predict Nondefining Phases process:

■ Predict nondefining phases at stations that already have primary defining

phases associated.

■ Compute the time and slowness windows for the predicted arrivals using

measurement and modeling errors for time and slowness.

The prediction algorithm is explained in more detail in [IDC5.2.1]. The output of

this process is the linked list of Driver structures.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design of GAconflict
Cont ro l

The Predict Nondefining Phases process is an integral part of the GAconflict program

and is activated when the program is activated.

I n te r f aces

The Predict Nondefining Phases process, like most processes within GAassoc and

GAconflict, uses the Driver structure as its main argument and modifies this struc-

ture by adding predicted arrivals to the event hypotheses. In addition to the

Driver linked list, the process uses the GA parameters. The Pred_triplet struc-

ture is designed for use within this process and the Predict Defining Phases process

and is instrumental in deciding the arrival that best fits the current event and phase

out of a set of several arrivals. This structure is presented in Table 12 on page 67.

Er ro r S ta tes

Defensive programming is used throughout the source code for GA, including this

process, by capturing and flagging any error from the functions called within the

process.

Check Cons i s tency

The purpose of the Check Consistency process is to make sure that the event

hypotheses generated by GAconflict satisfy a number of criteria before they are

written to the database. The following criteria are described in detail in [IDC5.2.1]:

■ Coda phase names are valid.

■ Each station can have no more than one hydroacoustic phase.

■ Deep events occur in zones of deep seismicity.

■ Distance and depth ranges are valid.

■ Hydroacoustic groups are complete.

■ Residuals of nondefining phases are screened.

■ Regional phase pairs are valid.
69

G A) S u b s y s t e m

1

70

▼

Chapter 4:

Detai led Design of GAconflict

S o f t w a r e
I D C D O C U M E N T A T I O N
■ Secondary phases are not isolated (if the corresponding parameter is set).

■ Phases are not duplicated.

■ Local magnitude is screened for being an outlier.

■ Deep events are not small (unless the solution is invalid at the surface).

■ Phases are in order.

■ Outlier station magnitudes are nondefining.

I nput /P rocess ing /Output

The inputs to Check Consistency are the GA control parameters and the linked list

of Driver structures representing the event hypotheses. A specific software mod-

ule enforces each of the criteria listed in the previous section, and every event is

passed through the suite of modules. When an event fails one of the criteria and is

modified accordingly (for instance, one of the phases is renamed to obtain a valid

regional phases pair, or a depth is attempted at the surface for small deep events),

it is resubmitted to the whole suite of tests. The output of this process is the linked

list of Driver structures.

Cont ro l

The Check Consistency process is a series of calls to the functions specified in

Table 11 on page 60. These calls are made from the main GAconflict program, and

control is returned to that main program when the functions have finished execut-

ing. Action is taken in the main program in case an event must be removed, as

indicated from the return flag from one of the functions called. The

GA_rm_event_pt_to_next() function is then called from the main program.

I n te r f aces

Each event in the linked list of events is passed by reference from one module

checking on a specific criterion to the next module. If an event is modified to com-

ply with one of the criterion after it fails a test, it is re-submitted to the whole suite

of tests.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design of GAconflict
Er ro r S ta tes

Defensive programming is used throughout the source code for GA, including this

process, by capturing and flagging any error from the functions called within the

process.

Wri te Event Hypotheses to
Database

This process is very similar to the process with the same name from the GAassoc

software unit (see “Write Event Hypotheses to Database” on page 52). The only

difference is that event, netmag, and stamag database table entries are written to

the database in addition to the origin, origerr, and assoc table entries.

DATABASE DESCR IPT ION

GAconflict interacts with the database through the libgdi software library. The main

interactions between GAconflict and the database are at the input and output

stages. At the input stage, the arrivals from the appropriate networks are read as

well as the event hypotheses from the temporary, previous, and current database

tables. At the output stage, the event hypotheses are written out to the current

database tables.

Database Des i gn

GAconflict uses the database for reading input data and static tables and for writ-

ing output to the final bulletin tables. The entity-relationship diagram of the

schema is shown in Figure 4 on page 19. All of the tables shown on this entity-

relationship diagram are accessed by the GAconflict software unit. The relation-

ships shown reflect the specific relationships in the context of GA. GAconflict

accesses three sets of bulletin tables (origin, origerr, and assoc): the temporary GA

tables (temporary in the sense that the data they contain are local to GA and are

cleared prior to each execution of the sequence GA_DBI, GAassoc, then GAcon-

flict), the previous-pipeline bulletin tables (which are accessed for reading only),

and the current-pipeline bulletin tables (which are accessed both for reading and
71

G A) S u b s y s t e m

1

72

▼

Chapter 4:

Detai led Design of GAconflict

S o f t w a r e
I D C D O C U M E N T A T I O N
writing). Figure 11 shows the relationship of GAassoc and GAconflict to the various

sets of bulletin tables. The temporary tables are the only bulletin tables accessed by

GAassoc. GAconflict, however, reads the temporary tables, reads the previous bul-

letin tables, and both reads and writes the current bulletin tables.

FIGURE 11. INPUT AND OUTPUT BULLETIN TABLES IN GAASSOC AND
GACONFLICT

Database Schema

Table 13 shows the usage of database tables by GAconflict. For each table used,

the third column shows the purpose for reading or writing each attribute.

GAassoc

GAconflict

2

GA temporary Db

current Db

previous
Db

bulletin

pipeline bulletin

pipeline bulletin

1

 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Detai led Design of GAconflict
TABLE 13: GACONFLICT DATABASE USAGE

Table Action Usage

site reads • sta, ondate, and offdate for record identifi-
cation

• lat, lon, and elev for location information

siteaux reads • sta for record identification

• nois, noissd, rely, and snthrsh for detection
probability

affiliation reads • sta for record identification

• net for identifying auxiliary network or sta-
tion elements for creating station intervals

arrival reads • sta and arid for record identification

• time to relate the arrival to the origin time
of a potential event and help in location

• iphase to identify the arrival’s initial phase

• deltim to take the timing error into account

• azimuth, delaz, slow, and delslo to use in
constraining associations and in location

• stassid to identify the arrival as belonging to
a local or regional group at one station

amplitude reads • arid, ampid, sta, and chan for record identi-
fication

• amp, snr, and per to use in magnitude com-
putation

• amptype to identify the type of record
(either from the STA/LTA or the A5/2
measurement)

apma reads • arid for record identification

• snr, hvrat, and rect for use in the restricted
shear phase test

ga_tag reads/
writes

• ID for record identification

• state to identify the tag associated to the
arrival

hydro_assoc reads • arid and hydro_id for record identification
73

G A) S u b s y s t e m

1

74

▼

Chapter 4:

Detai led Design of GAconflict

S o f t w a r e
I D C D O C U M E N T A T I O N
hydro_arr_group reads • arid and hydro_id for record identification

• az1, az2, nhydarr, delaz, and
hyd_grp_phase to constrain the association
of hydroacoustic groups to an event

assoc
(from current pipeline)

reads/
writes

• complete record as populated by the locator
library

origin
(from current pipeline)

reads/
writes

• complete record as populated by the locator
library

origerr
(from current pipeline)

reads/
writes

• complete record as populated by the locator
library

assoc
(from previous pipeline)

reads • complete record as populated by the locator
library

origin
(from previous pipeline)

reads • complete record as populated by the locator
library

origerr
(from previous pipeline)

reads • complete record as populated by the locator
library

event writes • complete record indicating the preferred
origin record for each event

stamag writes • complete record of station magnitude for all
stations where it is available

netmag writes • complete record of network magnitude for
all events where it is available

assoc_ga_temp reads • complete records for an event hypothesis as
populated by the locator library (libloc)

origin_ga_temp reads • complete record for an event hypothesis as
populated by the locator library (libloc)

origerr_ga_temp reads • complete record for an event hypothesis as
populated by the locator library (libloc)

TABLE 13: GACONFLICT DATABASE USAGE (CONTINUED)

Table Action Usage
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 5: De ta i l ed Des i gn o f
GA_DBI

This chapter describes the detailed design of GA_DBI and includes the following

topics:

■ Data Flow Model

■ Processing Units

■ Database Description
G A) S u b s y s t e m

1 75

S o f t w a r e
I D C D O C U M E N T A T I O N

76
Chapter 5: De ta i l ed Des i gn o f
GA_DBI

DATA FLOW MODEL

The GA_DBI program is used in the automatic pipeline to perform special-purpose

tagging of arrivals to support specialized processing by GAassoc and GAconflict.

Examples of arrivals that are tagged include arrivals from auxiliary stations and

hydroacoustic detections when an overflow situation (large number of defining

hydroacoustic detections within a short time period, with no azimuth information)

exists. GA_DBI is run before GAassoc in the automatic pipeline. Figure 12 shows

the data flow for GA_DBI.

FIGURE 12. GA_DBI DATA FLOW

affiliation GA parametersga_tag

1

Arrivals
Hydroacoustic

2

arrival

Tag
Auxiliary
Arrivals

Db Db Db D

Tag

auxiliary arrivals tags

hydroacoustic arrivals tags

GA control parameters

GA control parameters

auxiliary

hydroacoustic hydroacoustic

auxiliary
networkarrivals

networkarrivals
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Detai led Design of GA_DBI
PROCESS ING UNITS

As shown in Figure 12, GA_DBI has a simple structure and consists of two pro-

cesses:

■ Tag Auxiliary Arrivals

■ Tag Hydroacoustic Arrivals

The following paragraphs describe the design of these processes.

Tag Aux i l i a r y A r r i va l s

The purpose of the Tag Auxiliary Arrivals process is to label auxiliary seismic arrivals

in the set of arrivals loaded by GAassoc and GAconflict and to insert a record into

the ga_tag table identifying the arrival as WC_RESTRICTED, REQUESTED, and

PROBDET_RESTRICTED. The WC_RESTRICTED tag indicates that the arrival does

not contribute to the weighted-count test in the Locate and Confirm Preliminary

Event Hypotheses process. The REQUESTED tag indicates that the arrival is from an

auxiliary station, and the PROBDET_ RESTRICTED tag indicates that the arrival is

not used in the probability-of-detection test.

I nput /P rocess ing /Output

The inputs to the Tag Auxiliary Arrivals process are the set of GA parameters and

the affiliation and arrival database tables. This process identifies the arrivals from

auxiliary seismic stations and inserts entries into the ga_tag table to identify the

auxiliary arrivals as such and tag them with all three tags: WC_RESTRICTED,

REQUESTED, and PROBDET_RESTRICTED. The outputs of the Tag Auxiliary Arrivals

process are the records inserted into the ga_tag database table.

Cont ro l

The Tag Auxiliary Arrivals process is an integral part of the GA_DBI program and is

activated when the program is activated.
77

G A) S u b s y s t e m

1

78

▼

Chapter 5:

Detai led Design of GA_DBI

S o f t w a r e
I D C D O C U M E N T A T I O N
I n te r f ace

This process interfaces with database through the libgdi library.

Er ro r S ta tes

Defensive programming is used throughout the source code for GA, including this

process, by capturing and flagging any error from the functions called within the

process. In this particular case, the possible errors resulting from calling the libgdi

functions are captured, the error-reporting functions from the libgdi library are

called, and the message is written to the log file. The program exits after calling the

rollback function of libgdi and closing the database connection using the appropri-

ate libgdi function.

Tag Hydroacous t i c A r r i va l s

The purpose of the Tag Hydroacoustic Arrivals process is to label time intervals dur-

ing which hydroacoustic (H) arrivals are detected at a rate above a defined thresh-

old. When such a situation is detected, low-snr defining hydroacoustic arrivals are

tagged as DRIVER_RESTRICTED.

I nput /P rocess ing /Output

The inputs to the Tag Hydroacoustic Arrivals process are the GA parameters and the

affiliation and arrival database tables. Processing detects the high detection rate

condition (as defined by a threshold parameter of n arrivals per hour), inserts

entries into the ga_tag table to identify the hydroacoustic arrivals as such, and tags

the arrivals with the tag DRIVER_RESTRICTED. The output of Tag Hydroacoustic

Arrivals are the records inserted in ga_tag.

Cont ro l

The Tag Hydroacoustic Arrivals process is an integral part of the GAconflict program

and is activated when the program is activated.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 5:

Detai led Design of GA_DBI
I n te r f ace

This process interfaces with the database through the libgdi library.

Er ro r S ta tes

Defensive programming is used throughout the source code for GA, including this

process, by capturing and flagging any error from the functions called within the

process. In this particular case, the possible errors resulting from calling the libgdi

functions are captured, the error-reporting functions from the libgdi library are

called, and the message is written to the log file. The program exits after calling the

rollback function of libgdi and closing the database connection using the appropri-

ate libgdi function.

DATABASE DESCR IPT ION

GA_DBI interacts with the database through the GDI. The main interactions

between GA_DBI and the database are at the input stage, where the arrivals from

the appropriate networks are read, and at the output stage where the arrival tag-

ging is performed.

Database Des i gn

GA_DBI uses the database for reading input data and static database tables and for

writing output to the ga_tag tables. The entity-relationship model of the schema

used by GA_DBI is shown in Figure 4 on page 19. The figure shows all of the tables

accessed by the GA subsystem in general. Only a fraction of the tables shown on

that figure are accessed by GA_DBI; these tables are listed in Table 14.

Database Schema

Table 14 shows the usage of database tables by GA_DBI. For each table used, the

third column shows the purpose for reading or writing each attribute.
79

G A) S u b s y s t e m

1

80

▼

Chapter 5:

Detai led Design of GA_DBI

S o f t w a r e
I D C D O C U M E N T A T I O N
TABLE 14: GA_DBI DATABASE USAGE

Table Action Usage

affiliation reads • sta for record identification

• net for identifying auxiliary network, or station elements for
creating station intervals

arrival reads • sta and arid for record identification

• time to relate the arrival to the origin time of a potential
event

• iphase to identify the arrival’s initial phase

• snr to be used in the Tag Hydroacoustic Arrivals process

ga_tag writes • state for identifying the arrival’s tagging

• objtype for identifying the type of object

• id for record identification
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 6: De ta i l ed Des i gn o f
GAcons

This chapter describes the detailed design of GAcons and includes the following

topics:

■ Data Flow Model

■ Processing Units

■ Database Description
G A) S u b s y s t e m

1 81

S o f t w a r e
I D C D O C U M E N T A T I O N

82
Chapter 6: De ta i l ed Des i gn o f
GAcons

DATA FLOW MODEL

GAcons is a utility program that precomputes and stores propagation knowledge

base information used by GAassoc, GAconflict, and GAgrid. The information is

stored in two grid files, the Propagation Knowledge Base grid file and the Static

grid file. Precomputing and storing this information is much more efficient than

computing it on the fly in the GAassoc program. The grid files generated by GAcons

are written using a flat file format described in the next section. Figure 13 shows

the data flow for GAcons.

FIGURE 13. GACONS DATA FLOW

Static grid fileD

historical
D

Grid
Build Static

1.1

travel-time
D tables

grid pointsM

static tables:
site, affiliation,
siteaux

Propagation
Knowledge
Base grid file

DDb

Files
Build Grid

1.2

propagation
grid data

station
data

static grid
datatravel time

datapar fileD

seismicity
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Detai led Design of GAcons
PROCESS ING UNITS

GAcons consists of the following processes (see Figure 13):

■ Build Static Grid

■ Build Grid Files

The following paragraphs describe the design of these processes.

Bu i ld S ta t i c G r id

The Build Static Grid process sets up the coordinates of the global grid points. The

algorithm used to define the grid is described in detail in [IDC5.2.1]. The Build

Static Grid process can be configured for different grid spacing and different deep

historical seismicity statistics. Deep seismicity statistics (shown in Figure 13 as the

“historical seismicity” data store) are used to establish the location of the grid

points at depth. The statistics are a list of events occurring at depth over a long

time period, extracted from a standard event bulletin.

I nput /P rocess ing /Output

The input to the Build Static Grid process is the GAcons parameter file, which

includes the value of the average grid spacing and the name of the ASCII file con-

taining the deep seismicity statistics used to establish the grid points at depth. The

historical seismicity file is a list of seismic events (one line per event) with latitude,

longitude, depth, and body-wave magnitude in floating point format. Latitude and

longitude are expressed in decimal degrees, the depth in kilometers, and the mag-

nitude in magnitude units.

The processing in the Build Static Grid process consists of establishing the static

grid over the whole globe with the exact location of each grid file.

The output of the Build Static Grid process is the linked list of Grid_pt data struc-

tures.
83

G A) S u b s y s t e m

1

84

▼

Chapter 6:

Detai led Design of GAcons

S o f t w a r e
I D C D O C U M E N T A T I O N
Cont ro l

The Build Static Grid process is the first process to be executed within GAcons. It is

an integral part of the program and is not controlled independently. Its purpose is

to establish the list of grid points used in the exhaustive grid search algorithm by

GAassoc and to populate the appropriate data structures.

I n te r f aces

The Build Static Grid process populates a linked list of Grid_pt data structures.

This is a linked list in the sense that each element of the list points to the previous

element and the next element within the list. The whole list can be passed to dif-

ferent modules by simply passing the handle to the first element (pointer to the

first element pointer) within the list. That handle may also be called the “anchor”.

Each element of the linked list contains geographical information about the grid

cells. Table 15 displays the content of the Grid_pt data structure with a short

description of the data members of that structure. The Grid_pt data structure is

defined in the source code in file libGA.h.

TABLE 15: GRID_PT STRUCTURE

Type Name Description of Structure and Data Members

long index unique beam point identifier number

float lat latitude of current beam point (deg.)

float lon longitude of current beam point (deg.)

float depth depth of mid-point of cell (km)

float lower_depth_bound lower depth bound (km)

float upper_depth_bound upper depth bound

float radius radius of cell around grid point (deg.)

float b_value b value in grid cell

Grid_pt* next pointer to next grid point; NULL if last

Grid_pt* prev pointer to previous grid point; NULL if first
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Detai led Design of GAcons
Er ro r S ta tes

The Build Static Grid process is not a critical component of the operational system

in terms of reliability because it is used only occasionally to build the files contain-

ing the knowledge base used by GAassoc and GAconflict. No failure of this compo-

nent has been observed, and defensive programming is used to capture any error

message and inform the user of the failure condition on the standard output. Error

messages for this utility are output either on the UNIX stderr or on the UNIX

stdout stream and are captured in a file by re-directing one or both of these stan-

dard UNIX outputs to a file. The following example shows a warning message that

is written to stderr when the name of the seismicity file is not given accurately:

GAdepth_build: CouldnÕt open file:

/cmss/config/earth_specs/GA//1980-1993.pde_depts

--> Depth info will be ignored !!!

In this case, GAcons continues after writing the message. More severe errors, such

as a problem accessing the database, cause the program to exit.

Bu i ld G r id F i l e s

The purpose of the Build Grid Files process is to populate the data structures con-

taining the travel-time and slowness information for all grid cells and all stations

and write that information out to the two output grid files. The locations of the

grid points and the size of the cells output by the Build Static Grid process are used

as a basis to compute the structure contents listed in Tables 18 and 19 on page 90

for each of the grid cells. The structure contents include the propagation character-

istics from the cell for each station and seismic or acoustic phase. These propaga-

tion characteristics are used by the exhaustive grid search algorithm in GAassoc to

create new event hypotheses.
85

G A) S u b s y s t e m

1

86

▼

Chapter 6:

Detai led Design of GAcons

S o f t w a r e
I D C D O C U M E N T A T I O N
I nput /P rocess ing /Output

The following are inputs to the Build Grid Files process:

■ linked list with the grid point structure, Grid_pt, containing the location

of the grid points as well as the size of the cells

■ travel-time tables and applicable corrections [Ken91a]

■ station and network information contained in database tables site,

siteaux, and affiliation

■ GAcons control parameters applicable to the Build Grid Files process

■ magnitude attenuation tables

■ file, named slowamp.P, used by the probability-of-detection algorithm

to compute the minimum magnitude detectable at a given station for an

event within the grid cell

■ hydroacoustic blockage files

■ file used to define the valid distance and depth range of the various seis-

mic, hydroacoustic, and infrasonic phases

The Build Grid Files process computes the attributes from the geographical infor-

mation contained in the grid locations and in the static tables. It then places that

information in the data structures described in Tables 18 and 19 on page 90 and

writes that information to two separate binary grid files. The two grid files are the

principal outputs of the Build Grid Files process. To differentiate between the two

grid files, they are referred to as the Propagation Knowledge Base grid file and the

Static grid file.

The Propagation Knowledge Base grid file contains network-specific information

that is used by GAassoc. This file allows for a flexible number of grid points, sta-

tions, and phases. A record in the Propagation Knowledge Base grid file is called a

Beam Point record. A Beam Point record contains all of the information pertaining

to the physical point at the center of a cell. Beam Point records are written one

after the other to the grid file. At the end of each Beam Point record, a four-byte
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Detai led Design of GAcons
integer flag indicates whether or not a Beam Point record follows (Figure 14). A

value of one indicates that a record follows, and a value of zero indicates the end

of the file.

FIGURE 14. PROPAGATION KNOWLEDGE BASE GRID FILE STRUCTURE

The structure of a Beam Point record is shown in Figure 15. The first two elements

of the Beam Point record (the header) are the index number of the grid point and

the size of the record. Following this header is a Grid Point record containing static

information such as latitude, longitude, radius of the cell, and so on. The length of

this record is equal to the size of the grid_pt structure (Grid_pt) as listed in

Table 15 on page 84. The next records contain first-arrival station information. For

each station that could detect the earliest arrival from an event located in this cell,

a First-station record of length equal to the size of the StaPt structure is written

(see Table 18 on page 90). First-station records are separated by a flag indicating

whether or not another First-station record follows the current one. A value of one

indicates that more records follow, and a value of zero indicates the last record.

Beam Point 1 record Flag Beam Point 2 record Flag

Last Beam Point record Flag

• • •

• • •
87

G A) S u b s y s t e m

1

88

▼

Chapter 6:

Detai led Design of GAcons

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 15. BEAM POINT RECORD STRUCTURE WITHIN GRID FILES

Following the last First-station record are structures containing Station records for

all stations in the network and Phase records for all phases specified by the control

parameters. The structure of Station records (which contain Phase records) is

shown in Figure 16. The Station record comes first and is followed by the first

Phase record (the length of this record is equal to the size of the Phas_Inf C

structure; see Table 19 on page 91). All Phase records are written in a sequence

separated by flags. The last Phase record for a station is followed by a flag indicat-

ing that no more Phase records follow. This flag is followed by another flag indicat-

ing the presence (one) or absence (zero) of another station record. Two sequential

zero flags indicate the end of the last station for this beam point.

FIGURE 16. STATION RECORD STRUCTURE

Grid Point record First-station 1 Flag First-station 2

in
de

x
si

ze • • •

Last First-station Flag• • •

Flag

Last
Flag Phase 1 Flag Phase 2Station A

Phase 1 FlagStation B

• • •
Last

Flag Flag• • •

Phase 2 • • • Flag Flag• • •

Phase 1 Flag
Last

Phase 2
Last Phase

Flag Flag

• • •

of Last • • • • • •• • •

First-
station

Phase

Last
Phase

Station
Station
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Detai led Design of GAcons
The Grid Point record shown in Figure 15 on page 88 contains a Grid_Pt struc-

ture (see Table 15 on page 84). The last two elements of this structure are ignored

when reading the file. They contain the pointers to the previous and next Grid

Point records, and they are re-initialized to current values after reading the file.

Each Station record shown in Figure 16 contains attributes characterizing the sta-

tion-beam-point pair. The format is the same as the StaPt C structures shown in

Table 18 on page 90. A number of Phase records are attached to each Station

record. These records characterize the propagation between the station and the

beam point. All phases that are specified by the control parameters and that can

exist at the station for an event within the grid cell are included as Phase records.

The format of the Phase record follows the definition of the Phas_Inf C structure

shown in Table 19 on page 91.

Cont ro l

The Build Grid Files process, like the Build Static Grid process, is an integral part of

the GAcons program and is not controlled independently. It is invoked at the con-

clusion of the Build Static Grid process and when it exits, GAcons exits.

I n te r f aces

The Build Grid Files process populates the data structures defined in Tables 16

through 19 using the travel-time information derived from the location of the grid

points, the stations, and the travel-time tables. The input data for the Build Grid

Files process are brought into the system using the standard interface libraries of

libgdi for the database tables, libloc for the travel-time data, and libmagnitude for

the magnitude data. Figure 17 shows the relationships between the main data

structures handled within the Build Grid Files process. Each large rectangle in the

figure represents a data structure; the smaller rectangles with a dot represent

pointers and the ones lacking a dot represent data. The arrows show the entities

pointed to by these pointers. The crossed circles represent NULL pointers, which

are placed at the end of a linked list.
89

G A) S u b s y s t e m

1

90

▼

Chapter 6:

Detai led Design of GAcons

S o f t w a r e
I D C D O C U M E N T A T I O N

TABLE 16: BEAM_PT STRUCTURE

Type Name Description of Structure and Data Members

Grid_pt* loc pointer to Grid_pt structure containing grid location
information

First_Sta* first_sta pointer to stations with potential for recording first arrival

StaPt* stpt pointer to linked list of all stations

Beam_pt* next pointer to next Beam_pt; NULL if last

Beam_pt* prev pointer to previous Beam_pt; NULL if first

TABLE 17: FIRST_STA STRUCTURE

Type Name Description of Structure and Data Members

StaPt* sta_pt pointer to station-beam point information

First_Sta* next pointer to next First_Sta structure

TABLE 18: STAPT STRUCTURE

Type Name Description of Structure and Data Members

char sta[GA_STA_NAME] station code (name)

int tab_index index into arrival table

float delta distance from Beam-point center (deg.)

float azi azimuth between beam cell center and station
(deg.; angle measured at station)

float baz back-azimuth (deg.; angle measured at beam
cell center)

float min_mag minimum detectable magnitude at station

float mag_cor magnitude correction at center of cell

float d_mag_cor_dr radial derivative of magnitude correction
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Detai led Design of GAcons

float d_mag_cor_dz vertical derivative of magnitude correction

Phas_Inf* Ppt pointer to phase information

StaPt* next pointer to next station; NULL if this is the last
station on the linked list

TABLE 19: PHAS_INF STRUCTURE

Type Name Description of Structure and Data Members

char ph_id[] character string identifying the phase for which
information is given within this structure

Bool prim TRUE if phase is primary; otherwise, FALSE

float ttime travel-time to center of cell (s)

float ttime_min minimum travel-time (s)

float ttime_max maximum travel-time (s)

float d_ttime_dr radial travel-time derivative at cell center (s/deg.)

float d_ttime_dz vertical travel-time derivative at cell center

float delcell cell width in slowness vector space computed from
minimum and maximum slowness and azimuthal
aperture (width of cell as seen from station)

Phas_Inf* next pointer to next phase; NULL if last

TABLE 18: STAPT STRUCTURE (CONTINUED)

Type Name Description of Structure and Data Members
91

G A) S u b s y s t e m

1

92

▼

Chapter 6:

Detai led Design of GAcons

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 17. RELATIONSHIPS AMONG GACONS DATA STRUCTURES

Beam-point
Beam_pt • • •

First-arrival station
First_Sta

Stations
StaPt

•
•

•
•

previous

• • •

Phases
Phas_Inf

next

next next next

•

Grid_pt

•

next

next

• •

next next

Phas_Inf

• •

StaPt StaPt

•
•

next

Phas_Inf

•
•

next

Phas_Inf
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 6:

Detai led Design of GAcons
Er ro r S ta tes

The Build Grid Files process is not a critical component of the operational system in

terms of reliability because it is used only occasionally to build the files containing

the knowledge base used by GAassoc and GAconflict. No failure of this component

has been observed, and defensive programming is used to capture any error mes-

sage and inform the user of the failure condition on the standard output. The most

likely source of failure is an erroneous parameter setting such as setting the permis-

sions for a specific directory to deny write privileges. Error messages are logged to

standard output and standard error.

DATABASE DESCR IPT ION

GAcons use of the database is limited to reading station and network information

contained in the site, siteaux, and affiliation tables. These data are accessed using

the standard GDI library.

Database Des i gn

GAcons uses the database to obtain the static geographical information for the sta-

tions in the network. The entity-relationship diagram of the schema is shown in

Figure 4 on page 19. The network (or networks) for which the grid file is computed

is selected using the affiliation table.

Database Schema

Table 20 shows the usage of database tables by GAcons. For each table used, the

third column shows the purpose for reading or writing each attribute.
93

G A) S u b s y s t e m

1

94

▼

Chapter 6:

Detai led Design of GAcons

S o f t w a r e
I D C D O C U M E N T A T I O N

TABLE 20: GACONS DATABASE USAGE

Table Action Usage

site reads • sta, ondate, and offdate for record identification

• lat, lon, and elev for location information

siteaux reads • nois, noissd, rely, and snthrsh for detection probability

affiliation reads • sta for record identification

• net for identifying auxiliary network, or station elements for
creating station intervals
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 7: De ta i l ed Des i gn o f
GAgr id

This chapter describes the detailed design of GAgrid and includes the following

topics:

■ Data Flow Model

■ Processing Units

■ Database Description
G A) S u b s y s t e m

1 95

S o f t w a r e
I D C D O C U M E N T A T I O N

96
Chapter 7: De ta i l ed Des i gn o f
GAgr id

DATA FLOW MODEL

GAgrid is a GUI program that allows visualization of one of the two grid files (the

Propagation Knowledge Base grid file) built by the GAcons program. The informa-

tion in the grid file is used by GAassoc to form trial event hypotheses in the initial

phase of the automatic association process. The grid file is an essential component

of the automatic association process.

The binary grid file contains of the following information:

■ geographic location information for the grid points

■ a list of stations in the seismic, hydroacoustic, and infrasonic networks

■ the travel-time and slowness information for a list of seismic, hydroa-

coustic, or infrasonic phases for the paths between each station and each

grid cell.

GAgrid provides a graphical display of the grid cells and stations superimposed on a

global map with coastlines and political boundaries. The grid content can be exam-

ined as alphanumeric or graphical displays.

Figure 18 shows the data flow for GAgrid, which consists of two processes, one

that reads and parses the grid file and one that displays information at the user’s

request.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 7:

Detai led Design of GAgrid
FIGURE 18. GAGRID DATA FLOW

PROCESS ING UNITS

GAgrid consists of the following processes:

■ Read and Parse Grid File

■ Display Grid Information

The following paragraphs describe the design of these processes.

Read and Pa r se Gr id F i l e

The purpose of the Read and Parse Grid File process of GAgrid is to provide the

interface with the input grid file. At initialization time, the entire content of the grid

file is loaded into memory, and the content of the memory is then accessed as

needed by the interactive user.

I nput /P rocess ing /Output

The main input to the Read and Parse Grid File process is the GA grid file containing

the propagation information used by GAassoc to form the automatic events. The

configuration parameter file is the other input; it contains the path and the name

of the grid file.

Propagation
Knowledge Base:
grid file

D

user
configuration

D

1

Display

2

Parse Grid File
Read and Grid

parameters

Information
97

G A) S u b s y s t e m

1

98

▼

Chapter 7:

Detai led Design of GAgrid

S o f t w a r e
I D C D O C U M E N T A T I O N
Cont ro l

The Read and Parse Grid File process is automatically called when GAgrid is started.

The grid file is read immediately upon initiation of GAgrid, and its contents are

loaded into memory.

Er ro r hand l ing

As a non-operational software unit, GAgrid does not have the same level of robust-

ness as other GA programs; however, errors are trapped and reported in either a

terminal or a popup window.

Disp lay Gr id In fo rmat ion

Input /P rocess ing /Output

The Display Grid Information process uses the information stored in memory by the

Read and Parse Grid File process of GAgrid as input. The processing is driven by the

interactive user and consists of graphical and alphanumerical displays. The GA

Software User Manual [IDC6.5.12] describes the layout of these graphical and

alphanumerical displays in detail. The libWc, libdraw, and libXmp libraries perform

the display functions. The alphanumerical displays are displayed using the libXbae

library.

Cont ro l

The user controls the functions that display the data contained within the Propaga-

tion Knowledge Base grid file through the use of a pointer device and a set of

interactive menus containing buttons with specific purposes. A detailed description

of the menus and the functions attached to each of them is provided in

[IDC6.5.12].
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 7:

Detai led Design of GAgrid
Er ro r hand l ing

As a non-operational software unit, GAgrid does not have the same level of robust-

ness that other GA programs have. However, errors are trapped and reported in

either a terminal or a popup window.

DATABASE DESCR IPT ION

GAgrid does not use any database table to perform its functions.
99

G A) S u b s y s t e m

1

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Refe rences

The following sources supplement are referenced in document:

[Bac93] Bache, T. C., Bratt, S. R., Swanger, H., Beall, G., and Dashiell, F.
K., “Knowledge-Based Interpretation of Seismic Data in the
Intelligent Monitoring System,” Bulletin of the Seismological
Society of America, Volume 83, pp. 1507–1526, 1993.

[Bra88] Bratt, S. R., and Bache, T. C., “Locating Events with a Sparse
Network of Regional Arrays,” Bulletin of the Seismological
Society of America, Volume 78, pp. 780–798, 1988.

[DOD94a] Department of Defense, “Software Design Description,”
Military Standard Software Development and Documentation,
MIL-STD-498, 1994.

[Gan79] Gane, C., and Sarson, T., Structured Systems Analysis: Tools and
Techniques, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.

[IDC5.1.1Rev2] Science Applications International Corporation, Veridian
Pacific-Sierra Research, Database Schema, Revision 2,
SAIC-00/3057, PSR-00/TN2830, 2000.

[IDC5.1.3Rev0.1] Science Applications International Corporation, Veridian
Pacific-Sierra Research, Inc., Configuration of PIDC Databases,
SAIC-01/3022, PSR-99/TN1114, 2001.

[IDC5.2.1] Science Applications International Corporation, IDC Processing
of Seismic, Hydroacoustic, and Infrasonic Data, SAIC-99/3023,
1999.
G A) S u b s y s t e m

1 101

102

▼ References

S o f t w a r e
I D C D O C U M E N T A T I O N
[IDC6.2.1] Science Applications International Corporation, System
Operation and Maintenance, SAIC-99/3031, 1999.

[IDC6.5.12] Science Applications International Corporation, Global
Association (GA) Subsystem Software User Manual,
SAIC-01/3003, 2001.

[Kat98] Katz, C. N., Brown, D. J., Gault, A. K., LeBras, R., and Wang, J.,
PIDC 6.0: Implementation of Infrasonic Processing in PIDC,
CCB-PRO-98/11, 1998.

[Ken91a] Kennett, B., IASPEI 1991 Seismological Tables, Research School
of Earth Sciences, Australian National University, 1991.

[LeB96] Le Bras, R., User Manual for the Global Association Subsystem,
Science Applications International Corporation, SAIC-96/1128,
1996.

[LeB97] Le Bras, R., Sereno, T., Laney, H., Wahl, D., Jenkins, R., Brown,
R., Willemann, H., Freese, H., and Renner, B., Fusion of Seismic
and Hydroacoustic Data, CCB-PRO-97/12, 1997.

[Leo93] Leonard, S., Automatic global event association and location
estimation using a knowledge based approach to generalized
beamforming, Proceedings of the 15th Annual PL/ARPA
Seismic Research Symposium, PL-TR-93-2160.

[Rin89] Ringdal, F., and Kværna, T., “A Multi-channel Processing
Approach to Real-time Network Detection, Phase Association,
and Threshold Monitoring,” Bulletin of the Seismological
Society of America, Volume 79, pp. 780–798, 1989.

[Tay92] Taylor, D. and S. Leonard, Generalized beamforming for
automatic associatin, Proceedings of the 14th Annual PL/ARPA
Sefismic Research Symposium, PL-TR-92-2210, 422-428,
1992.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

S o f t w a r e
I D C D O C U M E N T A T I O N

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0
Glossa ry

A

amplitude

Zero-to-peak height of a waveform in
nanometers.

arrival

Signal that has been associated to an
event. First, the Global Association (GA)
software associates the signal to an
event. Later during interactive process-
ing, many arrivals are confirmed and
improved by visual inspection.

arrival-quality test

GA test of an event’s quality based on
the value of the slowness uncertainty
and the distance between the event and
station for each defining arrival.

arrival tag

Record in the ga_tag table that charac-
terizes an arrival to support logic in
GAassoc and GAconflict, for instance as
REQUESTED for auxiliary seismic arriv-
als.

associate

Assign an arrival to an S/H/I event.

associated phase

Phase that is associated with an S/H/I
event.

association set

Set of arrivals associated with an event
hypothesis or confirmed event in GA.

attribute

(1) Database column. (2) Characteristic
of an item; specifically, a quantitative
measure of a S/H/I arrival such as azi-
muth, slowness, period, or amplitude.

azimuth

Direction, in degrees clockwise with
respect to North, from a station to an
event.

B

b value

Slope of the line fit to a plot of seismic
magnitude versus cumulative number of
events, usually computed for a finite
geographic area.

beam point

Data structure used in GA that contains
the geographical description of a grid
point and the propagation characteris-
tics from all stations in a network to that
grid point.
G1

G A) S u b s y s t e m

1

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G2
bulletin

Chronological listing of event origins
spanning an interval of time. Often, the
specification of each origin or event is
accompanied by the event’s arrivals and
sometimes with the event’s waveforms.

C

CMR

Center for Monitoring Research.

Comprehensive Nuclear-Test-Ban Treaty
Organization

Treaty User group that consists of the
Conference of States Parties, the Execu-
tive Council, and the Technical Secretar-
iat.

Computer Software Component

Functionally or logically distinct part of a
computer software configuration item,
typically an aggregate of two or more
software units.

Computer Software Configuration Item

Aggregation of software that is desig-
nated for configuration management
and treated as a single entity in the con-
figuration management process.

confirmed event

An event that passed the minimum
weighted count threshold test, an arrival
quality test, and a probability of detec-
tion test in GA.

conflict resolution

GA process by which arrivals, initially
associated to multiple events, are disas-
sociated from all but one of the events.

corroborating arrival

Arrival that is added to an event seeded
by the driver arrival that helps to corrob-
orate the preliminary event hypothesis in
GA.

COTS

Commercial-Off-the-Shelf; terminology
that designates products such as hard-
ware or software that can be acquired
from existing inventory and used with-
out modification.

CSC

Computer Software Component.

CSCI

Computer Software Configuration Item.

CTBT

Comprehensive Nuclear-Test-Ban Treaty
(the Treaty).

CTBTO

Comprehensive Nuclear-Test-Ban Treaty
Organization.

D

DACS

Distributed Application Control System.
This software supports inter-application
message passing and process manage-
ment.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0
defining

Arrival attribute, such as arrival time, azi-
muth, or slowness, which is used in cal-
culating the event’s location or
magnitude.

defining arrival

Arrival whose attributes (time, azimuth,
and/or slowness) are used to compute
an event location.

defining phase

Associated phase for which features are
used in the estimation of the location
and origin time of an S/H/I event.

deg.

Degrees (as a distance).

detection

Probable signal that has been automati-
cally detected by the Detection and Fea-
ture Extraction (DFX) software.

DFX

Detection and Feature Extraction. DFX is
a programming environment that exe-
cutes applications written in Scheme
(known as DFX applications).

driver arrival

Arrival that is used as an initial seed to
build an automatic event in GA. This
arrival was detected at one of the sta-
tions close to the grid cell being evalu-
ated.

E

entity-relationship (E-R) diagram

Diagram that depicts a set of entities and
the logical relationships among them.

event

Unique source of seismic, hydroacoustic,
or infrasonic wave energy that is limited
in both time and space.

event characterization

IDC process of characterizing events by
features of signals recorded at one or
more stations.

event hypothesis

Association set that is not yet located or
confirmed by the Location and Confir-
mation process in GA.

G

GA

Global Association application. GA asso-
ciates S/H/I phases to events.

GB

Gigabyte. A measure of computer mem-
ory or disk space that is equal to 1,024
megabytes.

GDI

Generic Database Interface.

grid

Set of points used by GA covering either
a region of the Earth or the whole Earth
and including the interior where deep
seismicity occurs. Information about
G3

G A) S u b s y s t e m

1

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G4
propagation to a network of stations is
computed by GAcons for a grid and
stored in a binary file.

grid cell

Volume within the Earth around a grid
point in the GA grid that is characterized
by the grid point location, a radius, and a
depth range around that grid point.

grid point

Location (latitude, longitude, and depth)
on the grid used by GA to perform its
exhaustive association set search.

GSETT-3

Group of Scientific Experts Third Techni-
cal Test.

GUI

Graphical User Interface.

H

hydroacoustic

Pertaining to sound in the ocean.

I

ID

Identification; identifier.

IDC

International Data Centre.

IMS

International Monitoring System.

infrasonic (infrasound)

Pertaining to low-frequency (sub-audi-
ble) sound in the atmosphere.

instance

Running computer program. An individ-
ual program may have multiple instances
on one or more host computers.

I/O

Input/Output.

K

km

Kilometer.

knowledge base

Propagation-characteristic data stored in
a binary file generated by GAcons and
used by GAassoc. This file is also referred
to as the Propagation Knowledge Base
file.

L

large event extractor

Processing module in GAassoc that
extracts large events (with many defin-
ing phases) from the initial list of event
hypotheses.

linked list

List of similar data structures related to
one another through the use of pointers.
A linked list can be uni-directional (the
pointer is always to the next element in
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0
the list) or bi-directional (there are point-
ers to both the previous and next ele-
ments in the list).

M

magnitude

Empirical measure of the size of an event
(usually made on a log scale).

MB

Megabyte. 1,024 kilobytes.

mb

Magnitude of a seismic body wave.

ML

Magnitude based on waves measured
near the source.

N

NDC

National Data Center.

network

Spatially distributed collection of seismic,
hydroacoustic, or infrasonic stations for
which the station spacing is much larger
than a wavelength.

network processing

Processing that uses the results of Sta-
tion Processing from a network of sta-
tions to define and locate events.

nondefining phase

Associated phase for which features are
not used in estimating the location and
origin time of an S/H/I event.

NULL

Empty, zero.

O

ORACLE

Vendor of the database management
system used at the PIDC and IDC.

origin

Hypothesized time and location of a
seismic, hydroacoustic, or infrasonic
event. Any event may have many ori-
gins. Characteristics such as magnitudes
and error estimates may be associated
with an origin.

P

parameter

User-specified token that controls some
aspect of an application (for example,
database name, threshold value). Most
parameters are specified using [token =
value] strings, for example,
dbname=mydata/base@oracle.

parameter (par) file

ASCII file containing values for parame-
ters of a program. Par files are used to
replace command line arguments. The
files are formatted as a list of [token =
value] strings.
G5

G A) S u b s y s t e m

1

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G6
phase

Arrival that is identified based on its path
through the earth.

phase name

Name assigned to a seismic, hydroa-
coustic or infrasonic arrival associated
with a travel path.

PIDC

Prototype International Data Centre.

pipeline

1) Flow of data at the IDC from the
receipt of communications to the final
automated processed data before ana-
lyst review. 2) Sequence of IDC pro-
cesses controlled by the DACS that
either produce a specific product (such
as a Standard Event LIst) or perform a
general task (such as station processing).

post-location processing

Software that computes various magni-
tude estimates and selects data to be
retrieved from auxiliary stations.

primary phase

First arriving phase recorded at a S/H/I
station.

probability of detection

Probability estimate that an arrival from
a given event will be detected at a sta-
tion given the location and magnitude of
the event, the average noise level and its
standard deviation at the station, and
the signal-to-noise detection threshold.

process

Function or set of functions in an appli-
cation that perform a task.

processing unit

Software component of a larger entity
such as a program.

R

radionuclide

Pertaining to the technology for detect-
ing radioactive debris from nuclear reac-
tions.

RDBMS

Relational Database Management Sys-
tem.

REB

Reviewed Event Bulletin; the bulletin
formed of all S/H/I events that have
passed analyst inspection and quality
assurance review.

rollback

Process of returning a database to its
original state before processing began.

S

s

Second(s) (time).

SAIC

Science Applications International Cor-
poration.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0
schema

Database structure description.

seismic

Pertaining to elastic waves traveling
through the earth.

SEL1

Standard Event List 1; S/H/I bulletin cre-
ated by total automatic analysis of con-
tinuous timeseries data. Typically, the list
runs one hour behind real time.

SEL2

Standard Event List 2; S/H/I bulletin cre-
ated by totally automatic analysis of
both continuous data and segments of
data specifically down-loaded from sta-
tions of the auxiliary seismic network.
Typically, the list runs five hours behind
real time.

SEL3

Standard Event List 3; S/H/I bulletin cre-
ated by totally automatic analysis of
both continuous data and segments of
data specifically down-loaded from sta-
tions of the auxiliary seismic network.
Typically, the list runs 12 hours behind
real time.

S/H/I

Seismic, hydroacoustic, and infrasonic.

site

Location of a sensor in a station.

slowness

Inverse of velocity, in seconds/degree; a
large slowness has a low velocity.

snr

Signal-to-noise ratio.

split event

Event that has been incorrectly formed
by GA as several events that associate
subsets of the arrivals from the actual
event.

sta

Station.

STA/LTA

Short-term average/long-term average
ratio.

StaPro

Station Processing application for S/H/I
data.

States Parties

Treaty user group who will operate their
own or cooperative facilities, which may
be NDCs.

station

Collection of one or more monitoring
instruments. Stations can have either
one sensor location (for example, BGCA)
or a spatially distributed array of sensors
(for example, ASAR).

station processing

Processing based on data from a single
station.

structure

Software construct that collects one or
more variables, possibly of different
types, together under a single name for
convenient handling.
G7

G A) S u b s y s t e m

1

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G8
T

Treaty

Comprehensive Nuclear-Test-Ban Treaty
(CTBT).

Tuxpad

DACS client that provides a graphical
user interface for common Tuxedo
administrative services.

U

UNIX

Trade name of the operating system
used by the Sun workstations.

W

weighted count

Measure of an event computed as the
sum of coefficients for certain arrival
attributes such as arrival time, azimuth,
and slowness. It is used to define the
minimum size of an event hypothesis to
be retained by automatic or interactive
processing.

wfdisc

Waveform description record or table.
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

S o f t w a r e
I D C D O C U M E N T A T I O N

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0
I ndex

A

affiliation 17, 19
use by GA_DBI 80
use by GAassoc 54
use by GAconflict 73
use by GAcons 94

amplitude 16, 19
use by GAassoc 55
use by GAconflict 73

apma 16, 19
use by GAassoc 55
use by GAconflict 73

arrival 16, 19
use by GA_DBI 80
use by GAassoc 54
use by GAconflict 73

Arrival_Inf structure 42
assoc 17, 19

use by GAconflict 74
assoc_ga_temp

use by GAassoc 55
use by GAconflict 74

assoc_temp_ga 18
Automatic Processing CSCI 2

B

Beam_pt structure 90
Beam Point record structure 87

C

complementary documents iii
Cor_Sta structure 41
CTBT 10

D

DACS 14
database schema

overview 16
data flow symbols v
data structure conventions vii
design

conceptual 10
functional 20
GA_DBI 75
GAassoc 25
GAconflict 57
GAcons 81
GAgrid 95
interface 22

Dr_list structure 49
Driver structure 39

E

entity-relationship
diagram 19
symbols vi

ESAL 6
event 17, 19

use by GAconflict 74
event criteria 69
I1

G A) S u b s y s t e m

1

▼ Index

S o f t w a r e
I D C D O C U M E N T A T I O N

I2
F

file system 15
First_Sta structure 90
First-station record 87
functional design 20

G

GA_DBI 11, 13, 18, 22, 75
database design 79
data flow 76
processing units 77
Tag Auxiliary Arrivals 77
Tag Hydroacoustic Arrivals 78

ga_tag 18, 19
use by GA_DBI 80
use by GAassoc 55
use by GAconflict 73

GAassoc 11, 18, 21, 25
Access Knowledge Base 32
Associate Arrivals 35
database design 53
data flow model 26
Eliminate Redundant Events 47
Extract Arrival List 30
Extract Large Events 44
Locate and Confirm Preliminary Event

Hypotheses 49
processing units 28
Read Command-line Parameters 31
Resolve Conflicts 51
Restrict Phase List 34
Write Event Hypotheses to

Database 52
GAconflict 11, 13, 18, 22, 57

Check Consistency 69
database design 71
data flow model 58
Extract Arrival List 63
Locate and Confirm Preliminary Event

Hypotheses 65

Predict Defining Phases 66
Predict Non-defining Phases 68
processing units 61
Read Command-line Parameters 64
Read Event Information 64
Resolve Conflicts 68
Write Event Hypotheses to

Database 71
GAcons 11, 18, 21, 81

Build Grid Files 85
Build Static Grid 83
database design 93
data flow 82
processing units 83

GAgrid 11, 18, 21, 95
data flow 96
Display Grid Information 98
processing units 97
Read and Parse Grid File 97

GA roles 4
global libraries 14
Grid_pt structure 84
Grid Point record 87
GSETT-3 6

H

hardware requirements 7
hydro_arr_group 17, 19

use by GAassoc 55
use by GAconflict 74

hydro_assoc 17, 19
use by GAassoc 55
use by GAconflict 73

I

input
database tables 11

interface
IDC systems 22
 M a y 2 0 0 1 I D C - 7 . 1 . 4

G l o b a l A s s o c i a t i o n (G A) S u b s y s t e m

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Index

G l o b a l A s s o c i a t i o n (

I D C - 7 . 1 . 4 M a y 2 0 0
operator 23
IPC 14

M

man pages iii

N

netmag 17, 19
use by GAconflict 74

Network Processing CSC 2

O

operator interface 23
origerr 17, 19

use by GAconflict 74
origerr_ga_temp

use by GAassoc 55
use by GAconflict 74

origerr_temp_ga 18
origin 17, 19

use by GAconflict 74
origin_ga_temp

use by GAassoc 55
use by GAconflict 74

origin_temp_ga 18
output

database tables 11

P

Phas_Inf structure 91
Phase record 88
pointer conventions vii
Pred_triplet structure 67
processing flow 12

Propagation Knowledge Base grid file 11,
18, 21

structure 86

R

REB 10
reliability 15
requirements

hardware 7
software 7

S

site 17, 19
use by GAassoc 54
use by GAconflict 73
use by GAcons 94

siteaux 17, 19
use by GAassoc 54
use by GAconflict 73
use by GAcons 94

software requirements 7
Sta_ar structure 42
stamag 17, 19

use by GAconflict 74
StaPt structure 90
Static grid file 11, 18, 21
Station record 88
structure data content 37

T

typographical conventions vi
I3

G A) S u b s y s t e m

1

	Cover Page
	Notice Page
	Contents
	Figures
	Tables
	About this Document
	Purpose
	Scope
	Audience
	Related Information
	Using this Document
	Conventions

	Chapter 1: Overview
	Introduction
	Functionality
	Identification
	Status of Development
	Background and History
	Operating Environment
	Hardware
	Commercial-Off-The-Shelf Software

	Chapter 2: Architectural Design
	Conceptual Design
	Design Decisions
	Programming Language
	Global Libraries
	Database
	Interprocess Communication (IPC)
	Filesystem
	Design Model
	Database Schema Overview
	Database Entity-relationship Diagram

	Functional Description
	Building the Knowledge Base
	Visualizing the Knowledge Base
	Generating New Automatic Events
	Resolving Conflicts
	Setting Up Arrival Tags

	Interface Design
	Interface with Other IDC Systems
	Interface with External Users
	Interface with Operators

	Chapter 3: Detailed Design of GAassoc
	Data Flow Model
	Processing Units
	Extract Arrival List
	Read Command-line Parameters
	Access Knowledge Base
	Restrict Phase List
	Associate Arrivals
	Extract Large Events
	Eliminate Redundant Events
	Locate and Confirm Preliminary Event Hypotheses
	Resolve Conflicts
	Write Event Hypotheses to Database

	Database Description
	Database Design
	Database Schema

	Chapter 4: Detailed Design of GAconflict
	Data Flow Model
	Processing Units
	Extract Arrival List
	Read Command-line Parameters
	Read Event Information
	Locate and Confirm Preliminary Event Hypotheses
	Predict Defining Phases
	Resolve Conflicts
	Predict Nondefining Phases
	Check Consistency
	Write Event Hypotheses to Database

	Database Description
	Database Design
	Database Schema

	Chapter 5: Detailed Design of GA_DBI
	Data Flow Model
	Processing Units
	Tag Auxiliary Arrivals
	Tag Hydroacoustic Arrivals

	Database Description
	Database Design
	Database Schema

	Chapter 6: Detailed Design of GAcons
	Data Flow Model
	Processing Units
	Build Static Grid
	Build Grid Files

	Database Description
	Database Design
	Database Schema

	Chapter 7: Detailed Design of GAgrid
	Data Flow Model
	Processing Units
	Read and Parse Grid File
	Display Grid Information

	Database Description

	References
	Glossary
	Index

